K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2018

2) \(9^8.2^8-\left(18^4-1\right)\left(18^4+1\right)\)

=\(\left(9.2\right)^8-\left(18^4\right)^2-1^2\)

=\(18^8-18^8-1^2\)

\(=0-1^2\)

\(=-1^2=1\)

31 tháng 5 2018

1. a,

(a+b)3 + (a-b) 3 - 2a3 = a3 + 3ab2+ 3a2b + b3+ a3 - 3a2b + 3ab2- b3 - 2a3

= 6ab2

b, 98 . 28 - ( 184 -1)(184 + 1) = ( 9.2)8 - ( 188 - 1) ( hằng đẳng thức)

= 188 - 188 + 1 = 1

16 tháng 8 2018

a) \(\left(x+y\right)^2-\left(x-y\right)^2=x^2+2xy+y^2-x^2+2xy-y^2=4xy\)

16 tháng 8 2018

b) \(\left(a+b\right)^3+\left(a-b\right)^3-2a^3=a^3+3a^2b+3ab^2+b^3+a^3-3a^2b+3ab^2-b^3-2a^3\\ =6ab^2\)

24 tháng 12 2016

a) B xác định

\(\Leftrightarrow\begin{cases}2a^2+6a\ne0\\a^2-9\ne0\end{cases}\Leftrightarrow\begin{cases}2a\left(a+3\right)\ne0\\\left(a+3\right)\left(a-3\right)\ne0\end{cases}\Leftrightarrow\begin{cases}a\ne0\\a\ne-3\\a\ne3\end{cases}\)

Vậy để B xác định thì \(a\ne0\)\(a\ne\pm3\)

b) \(B=\frac{\left(a+3\right)^2}{2a^2+6a}\cdot\left(1-\frac{6a-18}{a^2-9}\right)\)

\(=\frac{\left(a+3\right)^2}{2a\left(a+3\right)}\cdot\frac{\left(a+3\right)\left(a-9\right)}{\left(a+3\right)\left(a-3\right)}\)

\(=\frac{a+3}{2a}\cdot\frac{a-9}{a+3}\)

\(=\frac{a-9}{2a}\)

 

8 tháng 12 2017

a) ĐKXĐ: \(\left\{{}\begin{matrix}2a^2+6a\ne0\\a^2-9\ne0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2a\left(a+3\right)\ne0\\\left(a-3\right)\left(a+3\right)\ne0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2a\ne0\\a-3\ne0\\a+3\ne0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a\ne0\\a\ne3\\a\ne-3\end{matrix}\right.\)

b) \(B=\dfrac{\left(a+3\right)^2}{2a^2+6a}.\left(1-\dfrac{6a-18}{a^2-9}\right)\)

\(\Leftrightarrow B=\dfrac{\left(a+3\right)^2}{2a^2+6a}.\left(\dfrac{a^2-9}{a^2-9}-\dfrac{6a-18}{a^2-9}\right)\)

\(\Leftrightarrow B=\dfrac{\left(a+3\right)^2}{2a^2+6a}.\dfrac{\left(a^2-9\right)-\left(6a-18\right)}{a^2-9}\)

\(\Leftrightarrow B=\dfrac{\left(a+3\right)^2}{2a^2+6a}.\dfrac{a^2-9-6a+18}{a^2-9}\)

\(\Leftrightarrow B=\dfrac{\left(a+3\right)^2}{2a^2+6a}.\dfrac{a^2-6a+9}{a^2-9}\)

\(\Leftrightarrow B=\dfrac{\left(a+3\right)^2}{2a^2+6a}.\dfrac{\left(a-3\right)^2}{a^2-9}\)

\(\Leftrightarrow B=\dfrac{\left(a+3\right)^2}{2a\left(a+3\right)}.\dfrac{\left(a-3\right)^2}{\left(a-3\right)\left(a+3\right)}\)

\(\Leftrightarrow B=\dfrac{a+3}{2a}.\dfrac{a-3}{a+3}\)

\(\Leftrightarrow B=\dfrac{\left(a+3\right)\left(a-3\right)}{2a\left(a+3\right)}\)

\(\Leftrightarrow B=\dfrac{a-3}{2a}\)

6 tháng 8 2020

1.

a/ \(A=2\left(x^3+y^3\right)-3\left(x^2+y^2\right)\)

\(=2\left(x+y\right)\left(x^2-xy+y^2\right)-3\left[\left(x+y\right)^2-2xy\right]\)

\(=2\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]-3\left[\left(x+y\right)^2-2xy\right]\)

\(=2.1.\left[1^2-3xy\right]-3\left[1^2-2xy\right]\)

\(=2-6xy-3+6xy\)

\(=-1\)

Vậy...

2.

a. \(127^2+146.127+73^2\)

\(=127^2+2.73.127+73^2\)

\(=\left(127+73\right)^2=200^2=40000\)

b. \(9^8.2^8-\left(18^4-1\right)\left(18^4+1\right)\)

\(=18^8-18^8+1\)

\(=1\)

8 tháng 7 2018

1272 + 146.127 + 732

= 1272 + 2 . 73 .127 + 732

= (127 + 73 ) 2

= 200 2

Help me :<<<<<<<<<<<<<<<<<<<<

a) ĐKXĐ: x \(\ne\pm3\)

b) = \(\frac{3\left(x-3\right)+x+3+18}{\left(x-3\right)\left(x+3\right)}\)

\(\frac{4x+12}{\left(x-3\right)\left(x+3\right)}\)\(\frac{4\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{4}{x-3}\)

c) P = 4 hay \(\frac{4}{x-3}=4\)=> x - 3 = 1 <=> x = 4 (TM)

Vậy ...

NV
15 tháng 11 2018

Đây là câu a/

https://hoc24.vn/hoi-dap/question/693692.html?pos=1903228

Còn câu b thì như sau:

Trước hết, nghi ngờ bạn ghi sai đề ở con này \(\dfrac{1}{a^2+7a+9}\) , số 9 phải là số 12 mới hợp lý. Mình tự sửa lại đề, còn nếu đề đúng như bạn chép thì bạn giữ nguyên nó, phần còn lại rút gọn được còn đâu thì quy đồng giải trâu thôi, chẳng cách nào với đề xấu kiểu ấy cả.

\(B=\dfrac{1}{a\left(a+1\right)}+\dfrac{1}{\left(a+1\right)\left(a+2\right)}+\dfrac{1}{\left(a+2\right)\left(a+3\right)}+\dfrac{1}{\left(a+3\right)\left(a+4\right)}+\dfrac{1}{\left(a+4\right)\left(a+5\right)}\)

\(B=\dfrac{1}{a}-\dfrac{1}{a+1}+\dfrac{1}{a+1}-\dfrac{1}{a+2}+\dfrac{1}{a+2}-\dfrac{1}{a+3}+\dfrac{1}{a+3}-\dfrac{1}{a+4}+\dfrac{1}{a+4}-\dfrac{1}{a+5}\)

\(B=\dfrac{1}{a}-\dfrac{1}{a+5}=\dfrac{5}{a\left(a+5\right)}\)

15 tháng 11 2018

đúng là mk ghi sai đề thật