K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2018

\(A=\frac{1+2.\sin\alpha.\cos\alpha}{\sin\alpha+\cos\alpha}=\frac{\sin^2\alpha+\cos^2\alpha+2.\sin\alpha.\cos\alpha}{\sin\alpha+\cos\alpha}=\frac{\left(\sin\alpha+\cos\alpha\right)^2}{\sin\alpha+\cos\alpha}=\sin\alpha+\cos\alpha\)

17 tháng 8 2018

sữa đề chút nha :

+) ta có : \(A=\dfrac{1+2sin\alpha.cos\alpha}{cos^2\alpha-sin^2\alpha}=\dfrac{\left(sin\alpha+cos\alpha\right)^2}{\left(sin\alpha+cos\alpha\right)\left(cos\alpha-sin\alpha\right)}=\dfrac{sin\alpha+cos\alpha}{cos\alpha-sin\alpha}\)

+) ta có :

\(B=sin^6\alpha+cos^6\alpha+3sin^2\alpha.cos^2\alpha\)

\(=\left(sin^2\alpha+cos^2\alpha\right)^3-3sin^2\alpha.cos^2\alpha\left(sin^2\alpha+cos^2\alpha\right)+3sin^2\alpha.cos^2\alpha\)

\(=1-3sin^2\alpha.cos^2\alpha+3sin^2\alpha.cos^2\alpha=1\)

13 tháng 9 2017

vô ib mk chỉ cho

31 tháng 10 2017

\(a,1-sin^2\alpha=cos^2\alpha\)

\(b,\left(1-cos\alpha\right)\left(1+cos\alpha\right)=1-cos^2\alpha=sin^2\alpha\)

\(c,1+sin^2\alpha+cos^2\alpha=1+1=2\)

\(d,sin\alpha-sin\alpha.cos^2\alpha=sin\alpha.\left(1-cos^2\alpha\right)=sin\alpha.sin^2\alpha=sin^3\alpha\)

\(e,sin^2\alpha+cos^2\alpha+2sin^2\alpha.cos^2\alpha\)

\(=1+2sin^2\alpha.cos^2\alpha\)

13 tháng 9 2016

2cos2 - 1 = 2cos2 - (sin2 + cos2​) = cos - sin2

12 tháng 9 2016

Ta có \(\frac{2\cos^2-1}{\sin+\cos}=\frac{\cos^2-\sin^2}{\sin+\cos}=\frac{\left(\cos+\sin\right)\left(\cos-\sin\right)}{\sin+\cos}\)

= cos - sin

NV
29 tháng 8 2020

\(1+tan^2a=1+\frac{sin^2a}{cos^2a}=\frac{cos^2a+sin^2a}{cos^2a}=\frac{1}{cos^2a}\)

\(1+cot^2a=1+\frac{cos^2a}{sin^2a}=\frac{sin^2a+cos^2a}{sin^2a}=\frac{1}{sin^2a}\)

\(cot^2a-cos^2a=\frac{cos^2a}{sin^2a}-cos^2a=cos^2a\left(\frac{1}{sin^2a}-1\right)=cos^2a\left(\frac{1-sin^2a}{sin^2a}\right)\)

\(=cos^2a\left(\frac{cos^2a}{sin^2a}\right)=cos^2a.cot^2a\)

\(\frac{1+cosa}{sina}=\frac{sina\left(1+cosa\right)}{sin^2a}=\frac{sina\left(1+cosa\right)}{1-cos^2a}=\frac{sina\left(1+cosa\right)}{\left(1-cosa\right)\left(1+cosa\right)}=\frac{sina}{1-cosa}\)