K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2018

Bài 1:

a)  \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)

\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)

b)   \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)

\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)

c)  ĐK:  \(a\ge0;a\ne1\)

  \(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)

\(=1-a+a=1\)

NV
20 tháng 9 2019

ĐKXĐ:....

\(A=\left(\frac{\left(1-\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right)^2\)

\(A=\left(a+2\sqrt{a}+1\right)\frac{1}{\left(1+\sqrt{a}\right)^2}=\frac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)^2}=1\)

\(B=\frac{2}{\sqrt{ab}}:\left(\frac{\sqrt{b}-\sqrt{a}}{\sqrt{ab}}\right)^2-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)

\(B=\frac{2}{\sqrt{ab}}.\frac{\sqrt{ab}^2}{\left(\sqrt{a}-\sqrt{b}\right)^2}-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}=\frac{2\sqrt{ab}-a-b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)

\(B=\frac{-\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)^2}=-1\)

6 tháng 10 2018

Ai giải giúp mình bài 1 với bài 4 trước đi