K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

e) Ta có: \(E=\left(\dfrac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}-\dfrac{x+\sqrt{x}}{x-1}\right)\cdot\dfrac{x-1}{2x+\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\left(\dfrac{\sqrt{x}\left(2x+\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\left(\dfrac{\sqrt{x}\left(2\sqrt{x}-1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\cdot\dfrac{\sqrt{x}-1}{2\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}\left(2\sqrt{x}-1\right)\left(\sqrt{x}-1\right)-\sqrt{x}\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{2\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}\left(2x-3\sqrt{x}+1\right)-x\sqrt{x}-x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{2\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\dfrac{2x\sqrt{x}-3x+\sqrt{x}-x\sqrt{x}-x-\sqrt{x}}{x+\sqrt{x}+1}\cdot\dfrac{1}{2\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\dfrac{x\sqrt{x}-4x}{x+\sqrt{x}+1}\cdot\dfrac{1}{2\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\dfrac{x\sqrt{x}-4x+\sqrt{x}\left(x+\sqrt{x}+1\right)}{\left(2\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{x\sqrt{x}-4x+x\sqrt{x}+x+\sqrt{x}}{\left(2\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{2x\sqrt{x}-3x+\sqrt{x}}{\left(2\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{x+\sqrt{x}+1}\)

 

m) Ta có: \(M=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{1}{a-\sqrt{a}}\right):\left(\dfrac{1}{\sqrt{a}+1}-\dfrac{2}{a-1}\right)\)

\(=\left(\dfrac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\dfrac{\sqrt{a}-1-2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)

\(=\dfrac{\sqrt{a}+1}{\sqrt{a}}\cdot\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}-3}\)

\(=\left(\sqrt{a}-1\right)\cdot\dfrac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}\left(\sqrt{a}-3\right)}\)

27 tháng 5 2017

Căn bậc hai. Căn bậc ba

Nếu có thêm điều kiện \(y>1\) thì kết quả là \(\dfrac{1}{x-1}\)

31 tháng 7 2017

Câu a có sai đề nên mk có sửa lại nha Liên hệ giữa phép chia và phép khai phương

28 tháng 6 2021

\(C=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(x-1\right)}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{x-1}\right)\)

\(=\left(\dfrac{x-1-2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(x-1\right)}\right):\left(\dfrac{\sqrt{x}+1-2}{x-1}\right)\)

\(=\left(\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-1\right)}\right):\left(\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)

\(=\left(\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(x-1\right)}\right):\left(\dfrac{1}{\sqrt{x}+1}\right)\)

\(=\dfrac{\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2}.\left(\sqrt{x}+1\right)=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

 

 

Ta có: \(C=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{x\sqrt{x}-\sqrt{x}+x-1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{x-1}\right)\)

\(=\left(\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)^2}-\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right):\left(\dfrac{\sqrt{x}+1-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)

\(=\dfrac{\sqrt{x}+1-2}{\left(\sqrt{x}+1\right)^2}:\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)^2}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

d) Ta có: \(D=\left(\sqrt{x}+\dfrac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right):\left(\dfrac{x}{\sqrt{xy}+y}+\dfrac{y}{\sqrt{xy}-x}-\dfrac{x+y}{\sqrt{xy}}\right)\)

\(=\left(\dfrac{x+\sqrt{xy}+y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right):\left(\dfrac{x}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}+\dfrac{y}{\sqrt{x}\left(\sqrt{y}-\sqrt{x}\right)}-\dfrac{\left(x+y\right)\left(x-y\right)}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\)

\(=\dfrac{x+y}{\sqrt{x}+\sqrt{y}}:\left(\dfrac{x\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)-y\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)-x^2+y^2}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\)

\(=\dfrac{x+y}{\sqrt{x}+\sqrt{y}}:\dfrac{x^2-x\sqrt{xy}-y\sqrt{xy}-y^2-x^2+y^2}{\sqrt{xy}\left(\sqrt{x}-y\right)\left(\sqrt{x}+\sqrt{y}\right)}\)

\(=\dfrac{x+y}{\sqrt{x}+\sqrt{y}}:\dfrac{-\sqrt{xy}\left(x+y\right)}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)

\(=\dfrac{x+y}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{xy}\cdot\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{-\sqrt{xy}\left(x+y\right)}\)

\(=-1\)

Câu 1: 

a: \(Q=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)

\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

b: Để Q>0 thì \(\sqrt{a}-2>0\)

=>a>4

Bài 1:

a: ĐKXĐ: 2x+3>=0 và x-3>0

=>x>3

b: ĐKXĐ:(2x+3)/(x-3)>=0

=>x>3 hoặc x<-3/2

c: ĐKXĐ: x+2<0

hay x<-2

d: ĐKXĐ: -x>=0 và x+3<>0

=>x<=0 và x<>-3

25 tháng 10 2018

A=\(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{\sqrt{x}}{1-x}\right).\dfrac{x-\sqrt{x}}{2\sqrt{x}+1}\)

=\(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{\sqrt{x}}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}\right).\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}+1}\)

=\(\left(\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}\right).\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}+1}\)

=\(\dfrac{\sqrt{x}+1+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}+1}\)

=\(\dfrac{2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}+1}\)

=\(\dfrac{\sqrt{x}}{\sqrt{x}+1}\)=\(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{x-1}\)=\(\dfrac{x-\sqrt{x}}{x-1}\)

16 tháng 7 2018

\(A=\left(\dfrac{\sqrt{x}}{1-\sqrt{x}}+\dfrac{\sqrt{x}}{1+\sqrt{x}}\right)+\dfrac{3\sqrt{x}}{x-1}\\ =\left(\dfrac{\sqrt{x}\left(1+\sqrt{x}\right)}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}+\dfrac{\sqrt{x}\left(1-\sqrt{x}\right)}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}\right)+\dfrac{3\sqrt{x}}{x-1}\\ =\dfrac{\sqrt{x}+x+\sqrt{x}-x}{1-x}+\dfrac{3\sqrt{x}}{x-1}\\ =\dfrac{2\sqrt{x}-3\sqrt{x}}{1-x}=\dfrac{\sqrt{x}}{x-1}\)

16 tháng 7 2018

\(A=\dfrac{\sqrt{x}}{1-\sqrt{x}}+\dfrac{\sqrt{x}}{1+\sqrt{x}}+\dfrac{3\sqrt{x}}{x-1}=\dfrac{\sqrt{x}\left(1+\sqrt{x}\right)+\sqrt{x}\left(1-\sqrt{x}\right)-3\sqrt{x}}{1-x}=\dfrac{-\sqrt{x}}{1-x}=\dfrac{\sqrt{x}}{x-1}\)

a: \(A=\dfrac{2x+1-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\left(x-\sqrt{x}+1-\sqrt{x}\right)\)

\(=\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\left(\sqrt{x}-1\right)^2=\sqrt{x}-1\)

b: A=3

=>căn x-1=3

=>căn x=4

=>x=16

c: A<=5

=>căn x-1<=5

=>căn x<=6

=>0<=x<=36

=>\(x\in\left\{0;2;3;4;...;36\right\}\)