\(\dfrac{\sqrt{x^2+4x+4}}{x-1}\)

b) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=\dfrac{\left|x+2\right|}{x-1}\)

b: \(=x-2y-\left|x-2y\right|\)\(=\left[{}\begin{matrix}x-2y-x+2y=0\\x-2y+x-2y=2x-4y\end{matrix}\right.\)

c: \(=\dfrac{\left|x+2\right|}{\left(x+2\right)\left(x-2\right)}=\pm\dfrac{1}{x-2}\)

11 tháng 8 2018

\(a.\sqrt{1-4a+4a^2}-2a=\sqrt{\left(1-2a\right)^2}-2a=\left|1-2a\right|-2a\)

*\(a>\dfrac{1}{2}\Rightarrow\left|1-2a\right|-2a=2a-1-2a=4a-1\)

* \(a\le\dfrac{1}{2}\Rightarrow\left|1-2a\right|-2a=1-2a-2a=1-4a\)

\(b.x-2y-\sqrt{x^2-4xy+4y^2}=x-2y-\sqrt{\left(x-2y\right)^2}=x-2y-\left|x-2y\right|\)

* \(x\ge2y\Rightarrow x-2y-\left|x-2y\right|=x-2y-x+2y=2x\)

* \(x< 2y\Rightarrow x-2y-\left|x-2y\right|=x-2y-2y+x=2x-4y\)

\(c.x^2+\sqrt{x^4-8x^2+16}=x^2+\sqrt{\left(x^2-4\right)^2}=x^2+\left|x^2-4\right|\)

* \(x^2-4\ge0\Rightarrow x^2+\left|x^2-4\right|=x^2+x^2-4=2x^2-4\)

* \(x^2-4< 0\Rightarrow x^2+\left|x^2-4\right|=x^2+4-x^2=4\)

\(d.2x-1-\dfrac{\sqrt{x^2-10x+25}}{x-5}=2x-1-\dfrac{\sqrt{\left(x-5\right)^2}}{x-5}=2x-1-\dfrac{\left|x-5\right|}{x-5}\)

* \(x\ge5\Rightarrow2x-1-\dfrac{\left|x-5\right|}{x-5}=2x-1-1=2x-2\)

* \(x< 5\Rightarrow2x-1-\dfrac{\left|x-5\right|}{x-5}=2x-1+1=2x\)

\(e.\dfrac{\sqrt{x^4-4x^2+4}}{x^2-2}=\dfrac{\sqrt{\left(x^2-2\right)^2}}{x^2-2}=\dfrac{\left|x^2-2\right|}{x^2-2}\)

* \(x^2\ge2\Rightarrow\dfrac{\left|x^2-2\right|}{x^2-2}=1\)

* \(x^2< 2\Rightarrow\dfrac{\left|x^2-2\right|}{x^2-2}=-1\)

\(f.\sqrt{\left(x-4\right)^2}+\dfrac{x-4}{\sqrt{x^2-8x+16}}=\left|x-4\right|+\dfrac{x-4}{\sqrt{\left(x-4\right)^2}}=\left|x-4\right|+\dfrac{x-4}{\left|x-4\right|}\)

* \(x\ge4\Rightarrow\left|x-4\right|+\dfrac{x-4}{\left|x-4\right|}=x-4+\dfrac{x-4}{x-4}=x-5\)

* \(x< 4\Rightarrow\left|x-4\right|+\dfrac{x-4}{\left|x-4\right|}=4-x-1=5-x\)

9 tháng 7 2018

\(a.x+3+\sqrt{x^2-6x+9}=x+3+\text{ |}x-3\text{ |}=x+3+3-x=6\) \(b.\sqrt{x^2+4x+4}-\sqrt{x^2}=\text{ |}x+2\text{ |}-\text{ |}x\text{ |}=x+2-\left(-x\right)=x+2+x=2x+2\) \(c.\dfrac{\sqrt{x^2-2x+1}}{x-1}=\dfrac{x-1}{x-1}=1\)

\(d.\text{ |}x-2\text{ |}+\dfrac{\sqrt{x^2-4x+4}}{x-2}=\text{ |}x-2\text{ |}+\dfrac{\text{ |}x-2\text{ |}}{x-2}=2-x+\dfrac{-\left(x-2\right)}{x-2}=2-x-1=1-x\)

7 tháng 6 2017

a) \(\dfrac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^6}}\)

\(=\dfrac{4a^2b^3}{8\sqrt{2}a^3b^3}\)

\(=\dfrac{1}{2\sqrt{2}a}\)

\(=\dfrac{\sqrt{2}}{4a}\)

b) \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\)

chịu đấy :v

c) \(\sqrt{\dfrac{\left(x-2\right)^2}{\left(3-x\right)^2}}+\dfrac{x^2-1}{x-3}\)

\(=\dfrac{x-2}{3-x}+\dfrac{x^2-1}{x-3}\)

\(=\dfrac{x-2}{-\left(x-3\right)}+\dfrac{x^2-1}{x-3}\)

\(=-\dfrac{x-2}{x-3}+\dfrac{x^2-1}{x-3}\)

\(=\dfrac{-\left(x-2\right)+x^2-1}{x-3}\)

\(=\dfrac{-x+1+x^2}{x-3}\)

d) \(\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{\left(y-2\sqrt{y}+1^2\right)}{\left(x-1\right)^4}}\)

\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{y-2\sqrt{y}+1}{\left(x-1\right)^4}}\)

\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\dfrac{\sqrt{y-2\sqrt{y}+1}}{\left(x-1\right)^2}\)

\(=\dfrac{1}{\sqrt{y}-1}\cdot\dfrac{\sqrt{y-2\sqrt{y}+1}}{x-1}\)

\(=\dfrac{\sqrt{y-2\sqrt{y}+1}}{\left(\sqrt{y}-1\right)\left(x-1\right)}\)

\(=\dfrac{\sqrt{y-2\sqrt{y}+1}}{x\sqrt{y}-\sqrt{y}-x+1}\)

e) \(4x-\sqrt{8}+\dfrac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}\)

\(=4x-2\sqrt{2}+\dfrac{\sqrt{x^2\cdot\left(x+2\right)}}{\sqrt{x+2}}\)

\(=4x-2\sqrt{2}+\sqrt{x^2}\)

\(=4x-2\sqrt{x}+x\)

\(=5x-2\sqrt{2}\)

8 tháng 6 2017

bạn ơi phần c mình sai đề bài.. bạn giúp mk giải lại đc k \(\sqrt{\dfrac{\left(x-2\right)^4}{\left(3-x\right)^2}}+\dfrac{x^2-1}{x-3}\)

1 tháng 8 2018

\(a,\dfrac{x+2\sqrt{x}-3}{\sqrt{x}-1}\)

\(\Leftrightarrow\dfrac{x+3\sqrt{x}-\sqrt{x}-3}{\sqrt{x}-1}\)

\(\Leftrightarrow\dfrac{\sqrt{x}.\left(\sqrt{x}+3\right)-\left(\sqrt{x}+3\right)}{\sqrt{x}-1}\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(\Rightarrow\sqrt{x}+3\)

\(b,\dfrac{4y+3\sqrt{y}-7}{4\sqrt{y}+7}\)

\(\Leftrightarrow\dfrac{4y+7\sqrt{y}-4\sqrt{y}-7}{4\sqrt{y}+7}\)

\(\Leftrightarrow\dfrac{\sqrt{y}.\left(4\sqrt{y}\right)-\left(4\sqrt{y}+7\right)}{4\sqrt{y}+7}\)

\(\Leftrightarrow\dfrac{\left(4\sqrt{y}+7\right).\left(\sqrt{y}-1\right)}{4\sqrt{y}+7}\)

\(\Rightarrow\sqrt{y}-1\)

\(c,\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)

\(\Leftrightarrow\dfrac{\sqrt{xy}.\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}\)

\(\Rightarrow\sqrt{xy}\)

1 tháng 8 2018

\(d,\dfrac{x-3\sqrt{x}-4}{x-\sqrt{x}-12}\)

\(\Leftrightarrow\dfrac{x+\sqrt{x}-4\sqrt{x}-4}{x+3\sqrt{x}-4\sqrt{x}-12}\)

\(\Leftrightarrow\dfrac{\sqrt{x}.\left(\sqrt{x}+1\right)-4\left(\sqrt{x}+1\right)}{\sqrt{x}.\left(x+3\right)-4\left(\sqrt{x}+3\right)}\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x}+1\right).\left(\sqrt{x}-4\right)}{\left(\sqrt{x}+3\right).\left(\sqrt{x}-4\right)}\)

\(\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)

\(\Rightarrow\dfrac{x-2\sqrt{x}-3}{x-9}\)

\(e,\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{1+\sqrt{4}}\)

\(\Leftrightarrow\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{1+2}\)

\(\Rightarrow\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{3}\)

2 tháng 7 2017

bổ sung: ý a) điều kiện x<2

20 tháng 9 2017

a) \(\dfrac{2}{x-3}\sqrt{\dfrac{x^2-6x+9}{4y^4}}=\dfrac{2}{x-3}.\dfrac{3-x}{2y^2}=\dfrac{2.2y^2}{\left(x-3\right)\left(3-x\right)}=-\dfrac{4y^2}{x^2-6x+9}=-\dfrac{2y}{x-3}\)

21 tháng 9 2017

=\(\dfrac{2}{2x-1}\sqrt{5}x\sqrt[]{\left(1-2x\right)^2}\)

=\(\dfrac{2\sqrt{5}x\left(1-2x\right)}{2x-1}\)

=\(\dfrac{-2\sqrt{5}x\left(2x-1\right)}{2x-1}\)

=\(-2\sqrt{5}x\)

31 tháng 3 2017

a) = . = . = vì x > 0.

Do đó = .

b) = . = ..

Vì y < 0 nên │y│= -y. Do đó = . = .

c) 5xy. = 5xy. = 5xy..

Vì x < 0, y > 0 nên = -x và = .

Do đó: 5xy = 5xy. = -.

d) 0,2 = = 0,2 =

Nếu x > 0 thì > 0 nên . Do đó 0,2 = .

Nếu x < 0 thì < 0 nên . Do đó 0,2 = -.

15 tháng 6 2017

\(P=\left(\dfrac{-\left(2+\sqrt{x}\right)}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}-\dfrac{4x+2\sqrt{x}-4}{\sqrt{x}^2-2^2}\right):\left(\dfrac{2}{2-\sqrt{x}}-\dfrac{\sqrt{x}+3}{\sqrt{x}\left(2-\sqrt{x}\right)}\right)\)

\(P=\left(\dfrac{-\left(2+\sqrt{x}\right)^2+\sqrt{x}\left(\sqrt{x}-2\right)-4x-2\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\dfrac{2\sqrt{x}-\sqrt{x}-3}{\sqrt{x}\left(2-\sqrt{x}\right)}\right)\)

\(P=\left(\dfrac{-4-4\sqrt{x}-x+x-2\sqrt{x}-4x-2\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right).\left(\dfrac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}\right)\)

\(P=\dfrac{-4x\left(\sqrt{x}\left(2-\sqrt{x}\right)\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)

\(P=\dfrac{-4x\left(-\sqrt{x}\left(\sqrt{x}-2\right)\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)

\(P=\dfrac{\sqrt{16x^3}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)

Có j bạn xem lại coi có sai xót chỗ nào ko nhé, mk ko chắc là đúng 100% đâu.

16 tháng 6 2017

yeucảm ơn c nhiều

31 tháng 5 2017

éo biết

a: \(A=6-3\sqrt{3}+4+\sqrt{3}+2\sqrt{3}=10\)

b: \(B=\sqrt{x}-\sqrt{y}-\sqrt{x}-\sqrt{y}=-2\sqrt{y}\)

c: \(C=\dfrac{\sqrt{3}-1}{\sqrt{6}-\sqrt{2}}=\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)