K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2019

\(A=2x.\left(10x^2-5x-2\right)-5x.\left(4x^2-2x-2\right)\)

\(=20x^3-10x^2-4x-20x^3+10x^2+10x\)

\(=6x\)

Thay x=2013 vào A ta được :

\(A=6.2013\)

\(=12078\)

23 tháng 10 2018

Bài 1 :

a) \(A=\left(x-3\right)^2-\left(x-5\right)\left(x+5\right)\)

\(A=x^2-6x+9-x^2+25\)

\(A=34-6x\)

b) \(B=2\left(x+y\right)\left(x-y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)

Dễ thấy đây là HĐT thứ 1

\(B=\left(x+y+x-y\right)^2\)

\(B=\left(2x\right)^2\)

\(B=4x^2\)

Bài 2 :

a) \(2x\left(x+5\right)-x^2-5x=0\)

\(2x\left(x+5\right)-x\left(x+5\right)=0\)

\(\left(x+5\right)\left(2x-2\right)=0\)

\(2\left(x+5\right)\left(x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+5=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-5\\x=1\end{cases}}}\)

b) \(4x\left(x-2013\right)-x+2013=0\)

\(4x\left(x-2013\right)-\left(x-2013\right)=0\)

\(\left(x-2013\right)\left(4x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-2013=0\\4x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2013\\x=\frac{1}{4}\end{cases}}}\)

29 tháng 4 2018

a)  \(ĐKXĐ:\) \(x\ne\pm1\)

\(A=\left(\frac{3x^2-4}{x^2-1}-\frac{2}{1-x}-\frac{2}{x+1}\right):\left(\frac{1-x}{x+1}\right)\)

\(=\left(\frac{3x^2-4}{\left(x-1\right)\left(x+1\right)}+\frac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\right).\frac{x+1}{1-x}\)

\(=\frac{3x^2-4+2x+2-2x+2}{\left(x-1\right)\left(x+1\right)}.\frac{x+1}{1-x}\)

\(=\frac{3x^2}{\left(x-1\right)\left(x+1\right)}.\frac{x+1}{1-x}\)

\(=-\frac{3x^2}{\left(x-1\right)^2}\)

AH
Akai Haruma
Giáo viên
9 tháng 7 2018

Lời giải:

Áp dụng BĐT AM-GM:

\(a^{2014}+\underbrace{1+1+....+1}_{1006}\geq 1007\sqrt[1007]{a^{2014}}=1007a^2\)

\(\Leftrightarrow a^{2014}+1006\geq 1007a^2\)

\(\Rightarrow a^{2014}+2013\geq 1007(a^2+1)\)

\(\Rightarrow \frac{a^{2014}+2013}{b^2+1}\geq \frac{1007(a^2+1)}{b^2+1}\). Hoàn toàn TT với các phân thức còn lại và cộng theo vế:

\(A\geq 1007\left(\frac{a^2+1}{b^2+1}+\frac{b^2+1}{c^2+1}+\frac{c^2+1}{a^2+1}\right)\)

\(\geq 1007.3\sqrt[3]{\frac{(a^2+1)(b^2+1)(c^2+1)}{(b^2+1)(c^2+1)(a^2+1)}}=3021\) (theo AM-GM)

Vậy \(A_{\min}=3021\Leftrightarrow a=b=c=1\)