Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét 2 trường hợp :
TH1 : x ≥ 0 => |x - 3| = x - 3
=> 3(x - 1) - 2|x - 3| = 3(x - 1) - 2(x - 3)
= 3x - 3 - 2x + 6
= x + 3
TH2 : x < 0 => |x - 3| = 3 - x
=> 3(x - 1) - 2|x - 3| = 3(x - 1) - 2(3 - x)
= 3x - 3 - 6 + 2x
= 5x - 9
Vậy 3(x - 1) - 2|x - 3| = x + 3 hoặc 3(x - 1) - 2|x - 3| = 5x - 9
a) \(\left(x-3\right)^2.\left(x+3\right).\left(x-3\right)\)
\(=\left(x-3\right).\left(x-3\right).\left(x+3\right).\left(x-3\right)\)
\(=\left(x-3\right)^3.\left(x+3\right)\)
\(=\left(3x-9\right).\left(x+3\right)\)
Phần b tương tự
a) 3(x-1)-2|x+3| = 3x-3-2(x+3) = 3x-3-2x+6 = (3x-2x)+(6-3)=x+3
b) 2|x-3|-|4x-1| = 2(x-3)-(4x-1) = 2x-6-4x+1 = (2x-4x)-(6-1) = -2x-5
Ta cố bdt \(|a|+|b|\ge|a+b|\), dễ dàng chứng mình bằng bình phương 2 vế. Dấu = sảy ra <=>IaI.IbI=a.b <=> a.b>=0
áp dụng vào từng câu
a)A=Ix+1I+Ix+2I+Ix+3I+I-x-4I+I-x-5I ( vì Ix+4I=I-x=4I, Ix+5I=I-x-5I
A>=I(x+1)+(-x-5)I+I(x+2)+(-x-4)I +Ix+3I=4+2+Ix+3I=6+Ix+3I>=6
Dấu bằng khi (x+1)(-x-5)>=0;(x+2)(-x-4)>=0;Ix+3I=0 =>x=-3
b) LÀm tương tự MinB=18
Dấu = khi (2x+1)(-2x-11)>=0;(2x+3)(-2x-9)>=0;(2x+5)(-2x-7)>=0 <=>-7/2<=x<=-5/2
\(A=3\left(2x-1\right)-\left|x-5\right|\)
\(=6x-3-\left|x-5\right|\)
TH1 : \(x-5\ge0\Rightarrow x\ge5\Rightarrow\left|x-5\right|=x-5\)
\(A=6x-3-x+5\)
\(=5x+2\)
TH2 : \(x-5< 0\Rightarrow x< 5\Rightarrow\left|x-5\right|=5-x\)
\(A=6x-3-5+x\)
\(=7x-8\)
Vậy ....