Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(2x - 1)2 + 2(2x - 1)(x + 1) + (x - 1)2 (Dễ dàng nhận thấy đây là HĐT số 1)
= (2x -1 + x - 1)2
= (3x - 2)2
a)*TH1: 2x+1>0 .Suy ra: |2x+1|=2x+1. Suy ra A=5x-2-2x-1=5x-2x-2-1=3x-3
*TH2: 2x+1<0. Suy ra: |2x+1|=-2x-1. Suy ra: A= 5x-2+2x+1=5x+2x-2+1=7x-1
b) Ta có: A>0.Suy ra: 5x-2>|2x+1|. Suy ra: 5x-2>0. Suy ra:5x>2. Suy ra x>2/5.
Vậy, nếu x>2/5 thì A>0.
Bài 2:
3x + 2(5 - x) = 0
<=> 3x + 10 - 2x = 0
<=> x + 10 = 0
<=> x = 0 - 10
<=> x = -10
=> x = -10
Bài 3:
6(3q + 4q) - 8(5p - q) + (p - q)
= 6.3p + 6.4q - 8.5p - (-8).q + p - q
= 18p + 24q - 40p + 8q + p - q
= (18p - 40p + p) + (24q + 8q - q)
= -21p + 31q
A=3.(2x-1) - Ix-5I
a)xét 2 trường hợp:
TH(1) : A=6x-3-x+5 (x-5>=0) = 5x-2
TH(2) : A=6x-3-5+x (x-5<0) = 7x-8
\(2x+1=0\Leftrightarrow2x=-1\Leftrightarrow x=\frac{-1}{2}\)
\(x-2=0\Leftrightarrow x=2\)
Ta có bảng xét dấu:
x \(\frac{-1}{2}\) 2
2x+1 - 0 + +
x-2 - - +
*) Nếu \(x\le\frac{-1}{2}\)ta có phương trình
\(A=\left(-2x-1\right)-\left(-x+2\right)+1\)
\(A=-2x-1+x-2+1\)
\(A=-x-2\)
*) Nếu \(\frac{-1}{2}< x\le2\)ta có phương trình
\(A=\left(2x+1\right)-\left(-x+2\right)+1\)
\(A=2x+1+x+2+1\)
\(A=3x+4\)
*) Nếu \(x>2\)ta có phương trình
\(A=\left(2x+1\right)-\left(x-2\right)+1\)
\(A=2x+1-x+2+1\)
\(A=x+4\)
Vậy \(A=\hept{\begin{cases}-x-2\left(\frac{-1}{2}\le x\right)\\3x+4\left(\frac{-1}{2}< x\le2\right)\\x+4\left(x>2\right)\end{cases}}\)