Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{\left(1+17\right).\left(1+\dfrac{17}{2}\right)..........\left(1+\dfrac{17}{19}\right)}{\left(1+19\right).\left(1+\dfrac{19}{2}\right)..........\left(1+\dfrac{19}{17}\right)}\)
\(=\dfrac{18.\dfrac{19}{2}.............\dfrac{36}{19}}{20.\dfrac{21}{2}..........\dfrac{36}{17}}\)
\(=\dfrac{18.19.20.......36}{1.2.3...19}:\dfrac{20.21.....36}{1.2.3...17}\)
\(=\dfrac{1.2.3......36}{1.2.....36}\)
\(=1\)
a) A=[27(14−13)]:[27(13−25)]=(14−13):(13−25)=114A=[27(14−13)]:[27(13−25)]=(14−13):(13−25)=114.
b) B=34(15−27−13+27)15(27+13)−13(27+13)=34(15−13)(15−13)(27+13)=11152B=34(15−27−13+27)15(27+13)−13(27+13)=34(15−13)(15−13)(27+13)=11152.
a) \mathrm{A}=\left[\dfrac{2}{7}\left(\dfrac{1}{4}-\dfrac{1}{3}\right)\right]:\left[\dfrac{2}{7}\left(\dfrac{1}{3}-\dfrac{2}{5}\right)\right]=\left(\dfrac{1}{4}-\dfrac{1}{3}\right):\left(\dfrac{1}{3}-\dfrac{2}{5}\right)=1 \dfrac{1}{4}A=[72(41−31)]:[72(31−52)]=(41−31):(31−52)=141.
b) \mathrm{B}=\dfrac{\dfrac{3}{4}\left(\dfrac{1}{5}-\dfrac{2}{7}-\dfrac{1}{3}+\dfrac{2}{7}\right)}{\dfrac{1}{5}\left(\dfrac{2}{7}+\dfrac{1}{3}\right)-\dfrac{1}{3}\left(\dfrac{2}{7}+\dfrac{1}{3}\right)}=\dfrac{\dfrac{3}{4}\left(\dfrac{1}{5}-\dfrac{1}{3}\right)}{\left(\dfrac{1}{5}-\dfrac{1}{3}\right)\left(\dfrac{2}{7}+\dfrac{1}{3}\right)}=1 \dfrac{11}{52}B=51(72+31)−31(72+31)43(51−72−31+72)=(51−31)(72+31)43(51−31)=15211
Giải:
a) \(\dfrac{\left(x+\dfrac{3}{4}\right).\dfrac{7}{2}-\dfrac{1}{6}}{-\left(\dfrac{4}{5}+\dfrac{1}{3}\right).\dfrac{1}{2}+1}=2\dfrac{33}{52}\)
\(\Leftrightarrow\dfrac{\left(x+\dfrac{3}{4}\right).\dfrac{7}{2}-\dfrac{1}{6}}{-\dfrac{17}{15}.\dfrac{1}{2}+1}=\dfrac{137}{52}\)
\(\Leftrightarrow\dfrac{\left(x+\dfrac{3}{4}\right).\dfrac{7}{2}-\dfrac{1}{6}}{\dfrac{13}{30}}=\dfrac{137}{52}\)
\(\Leftrightarrow\left(x+\dfrac{3}{4}\right).\dfrac{7}{2}-\dfrac{1}{6}=\dfrac{137}{52}.\dfrac{13}{30}\)
\(\Leftrightarrow\left(x+\dfrac{3}{4}\right).\dfrac{7}{2}-\dfrac{1}{6}=\dfrac{137}{120}\)
\(\Leftrightarrow\left(x+\dfrac{3}{4}\right).\dfrac{7}{2}=\dfrac{137}{120}+\dfrac{1}{6}\)
\(\Leftrightarrow\left(x+\dfrac{3}{4}\right).\dfrac{7}{2}=\dfrac{157}{120}\)
\(\Leftrightarrow x+\dfrac{3}{4}=\dfrac{157}{120}:\dfrac{7}{2}\)
\(\Leftrightarrow x+\dfrac{3}{4}=\dfrac{157}{420}\)
\(\Leftrightarrow x=\dfrac{157}{420}-\dfrac{3}{4}\)
\(\Leftrightarrow x=-\dfrac{79}{210}\)
Vậy \(x=-\dfrac{79}{210}\).
b) \(\dfrac{\left(5-\dfrac{2}{7}\right).\dfrac{7}{9}.\dfrac{3}{5}}{\left(3x-\dfrac{5}{6}\right):\dfrac{1}{7}}=5\dfrac{5}{21}\)
\(\Leftrightarrow\dfrac{\left(5-\dfrac{2}{7}\right).\dfrac{7}{15}}{\left(3x-\dfrac{5}{6}\right):\dfrac{1}{7}}=\dfrac{110}{21}\)
\(\Leftrightarrow\dfrac{\dfrac{33}{7}.\dfrac{7}{15}}{\left(3x-\dfrac{5}{6}\right):\dfrac{1}{7}}=\dfrac{110}{21}\)
\(\Leftrightarrow\dfrac{\dfrac{11}{5}}{\left(3x-\dfrac{5}{6}\right):\dfrac{1}{7}}=\dfrac{110}{21}\)
\(\Leftrightarrow\left(3x-\dfrac{5}{6}\right):\dfrac{1}{7}=\dfrac{11}{5}:\dfrac{110}{21}\)
\(\Leftrightarrow\left(3x-\dfrac{5}{6}\right):\dfrac{1}{7}=\dfrac{21}{50}\)
\(\Leftrightarrow3x-\dfrac{5}{6}=\dfrac{21}{50}.\dfrac{1}{7}\)
\(\Leftrightarrow3x-\dfrac{5}{6}=\dfrac{3}{50}\)
\(\Leftrightarrow3x=\dfrac{3}{50}+\dfrac{5}{6}\)
\(\Leftrightarrow3x=\dfrac{67}{75}\)
\(\Leftrightarrow x=\dfrac{67}{75}:3\)
\(\Leftrightarrow x=\dfrac{67}{225}\)
Vậy \(x=\dfrac{67}{225}\).
Chúc bạn học tốt!
CÁC BẠN GIÚP MK NHA!!!
NGÀY MAI MK NỘP BÀI RỒI
AI TRẢ LỜI NHANH NHẤT
CHÍNH XÁC NHẤT VÀ RÕ RÀNG
THÌ MK TICK CHO NHA!!!
NHỚ TRẢ LỜI NHANH GIÙM MK NHA
1,
\(A=\left(\dfrac{1}{2}-1\right)\cdot\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{2018}-1\right)\\ A=\left(-\dfrac{1}{2}\right)\cdot\left(-\dfrac{2}{3}\right)\cdot...\cdot\left(-\dfrac{2017}{2018}\right)\\ =-\left(\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{2017}{2018}\right)\\ =-\dfrac{1}{2018}\)
\(\frac{\left(\frac{2}{3}\right)^3.\left(\frac{-3}{4}\right)^2.\left(-1\right)^5}{\left(\frac{2}{5}\right)^2.\left(\frac{-5}{12}\right)^3}=\frac{\frac{2^3}{3^3}.\frac{3^2}{4^2}.\left(-1\right)}{\frac{2^2}{5^2}.\frac{\left(-5\right)^3}{12^3}}=\)\(\frac{\frac{1}{6}.\left(-1\right)}{\frac{2^2}{5^2}.\frac{5^3}{2^6.3^3}.\left(-1\right)}=\frac{\frac{1}{2.3}}{\frac{5}{2^4.3^3}}=\frac{2^3.3^2}{5}=\frac{72}{5}\)
\(\left(1-\dfrac{1}{1+2}\right)\cdot\left(1-\dfrac{1}{1+2+3}\right)\cdot\left(\dfrac{1}{1+2+3+...+2006}\right)\)
\(=\left(1-\dfrac{1}{3}\right)\cdot\left(1-\dfrac{1}{6}\right)\cdot\left\{\dfrac{1}{\left(2006+1\right)\left[\left(2006-1\right):1+1\right]}\right\}\)
\(=\dfrac{2}{3}\cdot\dfrac{5}{6}\cdot\dfrac{1}{2007\cdot2006}\)
\(=\dfrac{10}{18}\cdot\dfrac{1}{4026042}\)
\(=\dfrac{5}{9}\cdot\dfrac{1}{4026042}\)
\(=\dfrac{5}{36234378}\)