Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : \(x\ge0,x\ne25,x\ne9\)
a) \(A=\left(\frac{x-5\sqrt{x}}{x-25}-1\right):\left(\frac{25-x}{x+2\sqrt{x}-15}-\frac{\sqrt{x}+3}{\sqrt{x}+5}+\frac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)
\(=\left(\frac{x-5\sqrt{x}-\left(x-25\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\right):\left(\frac{-\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}+\frac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\right)\)
\(=\frac{-5\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}:\left(\frac{25-x-x+9+x-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\right)\)
\(=-\frac{5}{\sqrt{x}+5}:\frac{-\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}=\frac{-5}{\sqrt{x}+5}.\left(\frac{-\left(\sqrt{x}+5\right)}{\sqrt{x}+3}\right)=\frac{5}{\sqrt{x}+3}\)
b) \(A< 1\Rightarrow\frac{5}{\sqrt{x}+3}< 1\Rightarrow\sqrt{x}+3>5\Rightarrow\sqrt{x}>2\Rightarrow x>4\)
Chú ý kết hợp với điều kiện xác định.
a, \(\sqrt{\left(2-\sqrt{5}\right)^2}=\sqrt{5}-2\left(\sqrt{5}>2\right)\)
b, \(\sqrt{\left(3-\sqrt{2}\right)^2}=3-\sqrt{2}\left(3>\sqrt{2}\right)\)
c, Với a < 3
\(\sqrt{\left(a-3\right)^2}+\left(a-9\right)=3-a+a-9=-6\)
d, \(A=\sqrt{\left(2a+5\right)^2}-\left(2a-7\right)\)
\(=\left|2a+5\right|-2a+7\)
+) Xét \(x\ge\dfrac{-5}{2}\) có:
\(A=2a+5-2a+7=12\)
+) Xét \(x< \dfrac{-5}{2}\) có:
\(A=-2a-5-2a+7=-4a+2\)
Vậy...
\(a)\)\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3}{\sqrt{x-3}}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}-3}{\sqrt{x}-3}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+1\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(R=\frac{3\sqrt{x}+3}{\sqrt{x}+3}.\frac{\sqrt{x}-3}{\sqrt{x+1}}\)
\(R=\frac{3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}\)
\(R=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}\)
\(b)\) Ta có : \(R< -1\)
\(\Leftrightarrow\)\(\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}< -1\)
\(\Leftrightarrow\)\(\frac{\sqrt{x}-3}{\sqrt{x}+3}< \frac{-1}{3}\)
\(\Leftrightarrow\)\(3\sqrt{x}-9< -\sqrt{x}-3\)
\(\Leftrightarrow\)\(4\sqrt{x}< 6\)
\(\Leftrightarrow\)\(\sqrt{x}< \frac{3}{2}\)
\(\Leftrightarrow\)\(x< \frac{9}{4}\)
Chúc bạn học tốt ~
\(A=\sqrt{\left(\sqrt{a-1}+1\right)^2}+\sqrt{\left(\sqrt{a-1}-1\right)^2}\)
\(A=\sqrt{a-1}+1+1-\sqrt{a-1}\) ( DO: a < 2 - gt => \(1>\sqrt{a-1}\))
\(A=2\)
Vậy A = 2.
\(\left(\frac{a\sqrt{a}-b\sqrt{b}}{\sqrt{a}-\sqrt{b}}+\sqrt{ab}\right)\left(\frac{\sqrt{a}-\sqrt{b}}{a-b}\right)^2\) \(ĐKXĐ:\hept{\begin{cases}a\ge0\\b\ge0\\a\ne b\end{cases}}\)
\(=\left(\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}{\sqrt{a}-\sqrt{b}}+\sqrt{ab}\right)\left(\frac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\right)^2\)
\(=\left(\left(a+\sqrt{ab}+b\right)+\sqrt{ab}\right)\left(\frac{1}{\left(\sqrt{a}+\sqrt{b}\right)}\right)^2\)
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(\sqrt{a}+\sqrt{b}\right)^2}\)
\(=1\)
\(\left(\frac{a\sqrt{a}-b\sqrt{b}}{\sqrt{a}-\sqrt{b}}+\sqrt{ab}\right)\left(\frac{\sqrt{a}-\sqrt{b}}{a-b}\right)^2.\)
\(=\left(\frac{a\sqrt{a}-b\sqrt{b}}{\sqrt{a}-\sqrt{b}}+\frac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\right)\left(\frac{\sqrt{a}-\sqrt{b}}{a-b}\right)^2.\)
\(=\left(\frac{a\sqrt{a}-b\sqrt{b}}{\sqrt{a}-\sqrt{b}}+\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{a}-\sqrt{b}}\right)\left(\frac{\sqrt{a}-\sqrt{b}}{a-b}\right)^2.\)
\(=\left(\frac{a\sqrt{a}-b\sqrt{b}+a\sqrt{b}-b\sqrt{a}}{\sqrt{a}-\sqrt{b}}\right)\left(\frac{\sqrt{a}-\sqrt{b}}{a-b}\right)^2.\)
\(=\left(\frac{a\left(\sqrt{a}+\sqrt{b}\right)-b\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\right)\left(\frac{\sqrt{a}-\sqrt{b}}{a-b}\right)^2.\)
\(=\left(\frac{\left(a-b\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\right)\left(\frac{\sqrt{a}-\sqrt{b}}{a-b}\right)^2.\)
\(=\left(\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}\right)\left(\frac{\sqrt{a}-\sqrt{b}}{a-b}\right)^2.\)
\(=\left(\sqrt{a}+\sqrt{b}\right)^2\left(\frac{\sqrt{a}-\sqrt{b}}{a-b}\right)^2.\)
\(=\left(\sqrt{a}+\sqrt{b}\right)^2\left(\frac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\right)^2.\)
\(=\left(\sqrt{a}+\sqrt{b}\right)^2\cdot\frac{1}{\left(\sqrt{a}+\sqrt{b}\right)^2}.\)\(=1\)
Ta có: \(D=\sqrt{a^2-10a+25}+\sqrt{a^2-6a+9}\)
\(=\sqrt{\left(a-5\right)^2}+\sqrt{\left(a-3\right)^2}\)
\(=\left|a-5\right|+\left|a-3\right|\)
\(=5-a+a-3\)(Vì \(3\le a\le5\))
=2