Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^(n-1).(x+y)-y.[x^(n-1) + y^(n-1)]
=x.x^(n-1)+y.x^(n-1)-y.x^(n-1)-y.y^(n-...
= x. x^n:x - y.y^n:y
=x^n - y^n
xn-1(x+y)-y(xn-1+yn-1)
=xn+xn-1y-xn-1y-yn
=xn-yn
nhớ **** cho mình nhe
xn-1( x + y ) - y( xn-1 + yn-1 )
= xn + yxn-1 - yxn-1 - yn
= xn - yn
x(x-y)+y(x-y)
= x2-xy+xy-y2
= x2-y2
xn-1(x+y)-y(xn-1+yn-1)
= xn-1+1+xn-1y-xn-1y-y1+n-1
= xn-yn
1.x(x-y)+y(x-y)
=x^2-xy+xy-y^2
=x^2-y^2
2.x^n-1(x-y)-y(x^n-1+y^n-1)
=x^n-x^n-1y+x^n-1y-y^n
=x^n-y^n
a) x (x - y) + y (x - y) = x2 – xy+ yx – y2
= x2 – xy+ xy – y2
= x2 – y2
b) xn – 1 (x + y) – y(xn – 1 + yn – 1) =xn+ xn – 1y – yxn – 1 - yn
= xn + xn – 1y - xn – 1y - yn
= xn – yn.
a) x (x - y) + y (x - y) = x2 – xy+ yx – y2
= x2 – xy+ xy – y2
= x2 – y2
b) xn – 1 (x + y) – y(xn – 1 + yn – 1) =xn+ xn – 1y – yxn – 1 - yn
= xn + xn – 1y - xn – 1y - yn
= xn – yn.
\(x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)\)
\(=x^3-xy-x^3-x^2y+x^2y-xy=-2xy\)(1)
Thay \(x=\frac{1}{2};y=-100\) vào (1), ta có:
\(-2.\frac{1}{2}.-100=100\)
xn - 1 (x + y) - y (xn - 1 + yn - 1) \(=x^n+x^{n-1}y-x^{n-1}y-y^n=x^n-y^n\)
xn-1(x+y)-y(xn-1+yn-1)
= xn+xn-1y-yxn-1-yn
=xn+(xn-1y-yxn-1)-yn
=xn-yn
\(P=y\left(x^{n-1}+y^{n-1}\right)-x^{n-1}\left(x+y\right)\)
\(P=x^{n-1}y+y^n-x^n-x^{n-1}y\)
\(P=y^n-x^n\)
vào đây Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath