Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+1)^3-(x-1)^3-6(x+1)^2=x^3+3x^2+3x+1-x^3+3x^2-3x+1-6(x^2+2x+1)
=6x^2+2-6x^2-12x-6
=-12x-4
\(\left(x-3\right)^3-\left(x+3\right)^3\)
\(=\left(x-3-x-3\right)\left(\left(x-3\right)^2+\left(x-3\right)\left(x+3\right)+\left(x+3\right)^2\right)\)
\(=-6\left(\left(x-3\right)^2+\left(x^2-9\right)+\cdot\left(x+3\right)^2\right)\)
\(=x^3+3x^2+3x+1+x^3-3x^2+3x-1-3x^3-3x\)
\(=-x^3+3x\)
(x+1)2-(x-1)2-3(x+1)(x-1)
=[(x+1)-(x-1)][(x+1)+(x-1)]-3(x2-1)
=(x+1-x+1)(x+1+x-1)-3x2+3
=2.2x-3x2+3
=-3x2+4x+3
b) B= 4 .(x-6) - x2.(2+3x)+ x .(5x-4)+ 3x2 .(x-1)
=4x-24-2x2-3x3+5x2-4x+3x3-3x2
=-3x3+3x3-2x2+5x2-3x2+4x-4x-24
=-24
vậy giá trị của B ko phụ thuộc vào biến x