Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{\frac{a}{b}}+\sqrt{ab}+\frac{a}{b}\sqrt{\frac{b}{a}}\)
\(=\sqrt{\frac{a}{b}}+\sqrt{ab}+\sqrt{\frac{a^2b}{b^2a}}\)
\(=\sqrt{\frac{a}{b}}+\sqrt{ab}+\sqrt{\frac{a}{b}}\)
\(=2\sqrt{\frac{a}{b}}+\sqrt{ab}\)
a. A có nghĩa khi \(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-1\ne\\\frac{x+\sqrt{x}}{\sqrt{x}+1}\ne0\end{matrix}\right.0\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
A\(=\frac{x-\sqrt{x}+\sqrt{x}-1}{\sqrt{x}-1}.\frac{\sqrt{x}+1}{x+\sqrt{x}}\)\(=\frac{x-1}{\sqrt{x}-1}.\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}.\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}}\)
b. \(x=7+4\sqrt{3}\Rightarrow\)A = \(\frac{\sqrt{7+4\sqrt{3}}+1}{\sqrt{7+4\sqrt{3}}}=\frac{\sqrt{\left(2+\sqrt{3}\right)^2}+1}{\sqrt{\left(2+\sqrt{3}\right)^2}}=\frac{3+\sqrt{3}}{2+\sqrt{3}}\)
a/ Ta có: A=\(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)=\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}+1\right):\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right)\)
\(=\left(\sqrt{x}+1\right):\left(\sqrt{x}\right)=\frac{\sqrt{x}+1}{\sqrt{x}}\)
b/ Ta có :\(x=7+4\sqrt{3}=3+4\sqrt{3}+4=\left(\sqrt{3}+2\right)^2
\)
\(\Rightarrow\sqrt{x}=|\sqrt{3}+2|=\sqrt{3}+2\)
Thay x vào A ta có:
A\(=\frac{\sqrt{x}+1}{\sqrt{x}}=\frac{\sqrt{3}+2+1}{\sqrt{3}+2}=\frac{\sqrt{3}+3}{\sqrt{3}+2}=\frac{\left(\sqrt{3}+3\right)\left(2-\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=\frac{3-\sqrt{3}}{1}=3-\sqrt{3}\)
a) \(A=\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{6}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2\)
\(A=\frac{\left(-\sqrt{a}+1\right)^2}{\left(-a+1\right)^2}.\left(\sqrt{a}+\frac{-a\sqrt{a}+1}{-\sqrt{a}+1}\right)\)
\(A=\frac{\left(1-\sqrt{a}\right)^2\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)}{\left(1-a\right)^2}\)
\(A=\frac{\frac{-a\sqrt{a}+\sqrt{a}.\left(-\sqrt{a}+1\right)+1}{-\sqrt{a}+1}.\left(-\sqrt{a}+1\right)^2}{\left(1-a\right)^2}\)
\(A=\frac{a^2-2a+1}{\left(1-a\right)^2}\)
\(A=\frac{\left(a-1\right)^2}{\left(1-a\right)^2}\)
\(A=1\)
\(\frac{a-b}{\sqrt{a}-\sqrt{b}}+\frac{\sqrt{a}^3+\sqrt{b}^3}{a-b}\)
\(=\sqrt{a}+\sqrt{b}+\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)
\(=\sqrt{a}+\sqrt{b}+\frac{a-\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}\)
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}+\frac{a-\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}\)
\(=\frac{a-b+a-\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}\)
\(=\frac{2a-\sqrt{ab}}{\sqrt{a}-\sqrt{b}}\)