\(^2\) - 2( x + y + z ) ( x+y) + ( x + y)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2016

Dùng hằng đẳng thức thứ 2:

A= [(x+y+z)-(x+y)]2=z2

Chúc bạn học tốt!

22 tháng 7 2016

                Áp dụng HĐT thứ 2: (A - B)= A2 - 2AB + B2, ta có:

   (x + y + z)2 - 2(x + y + z)(x + y) + (x + y)2 = [(x + y + z) - (x + y)]2

                                                                                      = z2 

22 tháng 7 2020

Bài làm:

Ta có: \(\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)\)

\(=\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2\)(hằng đẳng thức đầu)

\(=\left(x-y+z+y-z\right)^2=x^2\)

22 tháng 7 2020

\(\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)\)

\(=\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2\)

\(=\left[\left(x-y+z\right)+\left(y-z\right)\right]^2=\left(x-y+z+y-z\right)^2=x^2\)

12 tháng 9 2017

a)2(x - y)(x + y) + (x + y)2+ (x - y)2

=2.x2-y2 +x2+2xy+y2+x2-2xy+y2

=(2x2+x2+x2)+(-y2+y2+y2)+(2xy-2xy)

=4x2+y2

b)(x - y + z)2+ (z - y)2+ 2(x - y + z)(y - z)

=x2-y2+z2+z2-2zy+y2+2x-2y2+2z2

=(-y2+y2-2y2 ) +(z2+z2+2z2) +x2-2zy+2x

=-2y2 +4z2+x2-2xy +2x

6 tháng 6 2017

\(a,\left(x+y\right)^2+\left(x-y\right)^2=x^2+2xy+y^2+x^2-2xy+y^2=2\left(x^2+y^2\right)\)\(b,2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2=2x^2-2y^2+x^2+2xy+y^2+x^2-2xy+y^2=3x^2\)\(c,\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)=\left[\left(x-y+z\right)-\left(z-y\right)\right]^2=\left(x-2y\right)^2\)

17 tháng 6 2017

a) \(\left(x+y\right)^2+\left(x-y\right)^2\)

=\(\left(x^2+2xy+y^2\right)+\left(x^2-2xy+y^2\right)\)

=\(x^2+2xy+y^2+x^2-2xy+y^2\)

\(2x^2+2y^2=2\left(x^2+y^2\right)\)

b) \(2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)
\(=\left(x-y\right)^2+2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\)

=\(\left[\left(x-y\right)+\left(x+y\right)\right]^2\)

= \(\left(x-y+x+y\right)^2\)

\(=2x^2\)

c) \(\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)\)

\(=\left(x-y+z\right)^2-2\left(x-y+z\right)\left(z-y\right)+\left(z-y\right)^2\)

\(=\left[\left(x-y+z\right)-\left(z-y\right)\right]^2\)

= \(\left(x-y+z-z+y\right)^2=x^2\)

28 tháng 6 2016

1)  2xy2+x2y4+1=(xy2)2+2xy2.1+12=(xy2+1)2

2)

a)2(x-y)(x+y)+(x+y)2+(x-y)2=(x+y+x-y)2=(2x)2=4x2

b)(x-y+z)2+(z-y)2+2(x-y+z)(y-z)

=(x-y+z)2+(y-z)2+2(x-y+z)(y-z)

=(x-y+z+y-z)2

=x2

7 tháng 9 2020

\(\left(x+y-z\right)^2+2\left(z-x-y\right)\left(x+y\right)+\left(x+y\right)^2\)

\(=\left(x+y-z\right)^2-2\left(x+y-z\right)\left(x+y\right)+\left(x+y\right)^2\)

\(\left[\left(x+y-z\right)-\left(x+y\right)\right]^2=z^2\)

7 tháng 9 2020

\(\left(x+y-z\right)^2+2\left(z-x-y\right)\left(x+y\right)+\left(x+y\right)^2\)

\(=\left(x+y-z\right)^2-2\left(x+y-z\right)\left(x+y\right)+\left(x+y\right)^2\)

\(=\left(x+y-z-x+y\right)^2\)

\(=-z^2\)

15 tháng 11 2018

\(\frac{x^2-3x+2}{x^3-1}=\frac{x^2-2x-x+2}{\left(x-1\right).\left(x^2+x+1\right)}\)

\(=\frac{x.\left(x-2\right)-\left(x-2\right)}{\left(x-1\right).\left(x^2+x+1\right)}=\frac{\left(x-1\right).\left(x-2\right)}{\left(x-1\right).\left(x^2+x+1\right)}\)

\(=\frac{x-2}{x^2+x+1}\)

27 tháng 7 2016

ngu the

27 tháng 7 2016

\(\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)\)

\(=x^2+y^2+z^2-2xy-2yz+2xz+z^2-2yz+y^2+\left(2y-2z\right)\left(x-y+z\right)\)

\(=x^2+y^2+z^2-2xy-2yz+2xz+z^2-2yz+y^2+2xy-2y^2+2yz-2xz+2yz-2z^2\)

\(=x^2\)

12 tháng 8 2020

quy đồng mẫu thức ta được

\(\frac{yz\left(z-y\right)+xz\left(x-z\right)+xy\left(y-x\right)}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)\(=\frac{yz\left(z-y\right)+xz\left(x-z\right)-xy\left[\left(z-y\right)+\left(x-z\right)\right]}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

\(=\frac{y\left(z-y\right)\left(z-x\right)+x\left(x-z\right)\left(z-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}=\frac{\left(z-y\right)\left(z-x\right)\left(y-x\right)}{xyz\left(z-y\right)\left(z-x\right)\left(y-x\right)}=\frac{1}{xyz}\)