\(\sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2}\)

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2019

Đặt \(x=\sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2}.\)

\(\Rightarrow x^3=\sqrt{5}+2-3\sqrt[3]{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}\left(\sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2}\right)-\sqrt{5}+2\)

         \(=4-3\sqrt[3]{5-4}.x\)( Vì \(x=\sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2}\))

        \(=4-3x\)

\(\Rightarrow x^3+3x-4=0\Leftrightarrow\left(x^3-1\right)+\left(3x-3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+4\right)=0\Leftrightarrow x-1=0\)( Vì \(x^2+x+4=\left(x+\frac{1}{2}\right)^2+\frac{15}{4}>0\))

\(\Leftrightarrow x=1\)hay \(\sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2}=1\)

22 tháng 6 2017

=\(\sqrt{3-\sqrt{5}}\)\(\sqrt{2}\)(\(\sqrt{5}-1\)) (\(3+\sqrt{5}\))

=\(\sqrt{6-2\sqrt{5}}\)(\(\sqrt{5}-1\)) (\(3+\sqrt{5}\))

=\(\sqrt{\left(\sqrt{5}+1\right)^2}\)(\(\sqrt{5}-1\))(\(3+\sqrt{5}\))

=(\(\sqrt{5}+1\))(\(\sqrt{5}-1\))(\(3+\sqrt{5}\))

=4(\(3+\sqrt{5}\))

=12+4\(\sqrt{5}\)

26 tháng 7 2018

E = \(6x+\sqrt{9x^2-12x+4}\)

E = \(6x+\sqrt{\left(3x-2\right)^2}\)

E = \(6x+\left|3x-2\right|\)

E = \(6x+3x-2\)

E = \(9x-2\)

F = \(5x-\sqrt{x^2+4x+4}\)

F = \(5x-\sqrt{\left(x+2\right)^2}\)

F = \(5x-\left|x+2\right|\)

F = \(5x-x+2\)

F = \(4x+2\)

24 tháng 5 2021

a, \(\sqrt{11-2\sqrt{10}}=\sqrt{\left(\sqrt{10}\right)^2-2\sqrt{10}+1}=\sqrt{\left(\sqrt{10}+1\right)^2}\)

\(=\left|\sqrt{10}+1\right|=\sqrt{10}+1\)

b, \(\sqrt{27-10\sqrt{2}}=\sqrt{5^2-10\sqrt{2}+\left(\sqrt{2}\right)^2}=\sqrt{\left(5-\sqrt{2}\right)^2}\)

\(=\left|5-\sqrt{2}\right|=5-\sqrt{2}\)

c, \(\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=\left|\sqrt{3}+1\right|=\sqrt{3}+1\)

làm nốt 2 câu cuối nhé, cách làm y trên 

25 tháng 5 2021

d/\(\sqrt{9+4\sqrt{5}}\)

\(\sqrt{2^2+4\sqrt{5}+\left(\sqrt{5}\right)^2}\)

=\(\sqrt{\left(2+\sqrt{5}\right)^2}\)

\(\left|2+\sqrt{5}\right|\)

=  \(2+\sqrt{5}\)

e/ \(\sqrt{21+4\sqrt{5}}\)

\(\sqrt{20+4\sqrt{5}+1}\)

=\(\sqrt{\left(2\sqrt{5}\right)^2+2.2\sqrt{5}+1^2}\)

=\(\sqrt{\left(2\sqrt{5}+1\right)^2}\)

\(\left|2\sqrt{5}+1\right|\)

\(2\sqrt{5}+1\)

27 tháng 12 2019

\(A=\sqrt{3-\sqrt{5-2\sqrt{3}}}-\sqrt{3+\sqrt{5+2\sqrt{3}}}\)

\(A^2=\left(\sqrt{3-\sqrt{5-2\sqrt{3}}}-\sqrt{3+\sqrt{5+2\sqrt{3}}}\right)^2\)

\(A^2=\left(3-\sqrt{5-2\sqrt{3}}\right)-2\sqrt{\left(3-\sqrt{5-2\sqrt{3}}\right)\left(3+\sqrt{5+2\sqrt{3}}\right)}+\left(3+\sqrt{5+2\sqrt{3}}\right)\)

\(A^2=\left(3-\sqrt{5-2\sqrt{3}}\right)-2\sqrt{9+3\sqrt{5+2\sqrt{3}}-3\sqrt{5-2\sqrt{3}}-\sqrt{\left(5-2\sqrt{3}\right)\left(5+2\sqrt{3}\right)}}+\left(3+\sqrt{5+2\sqrt{3}}\right)\)

a: \(=6\sqrt{2}-12\sqrt{3}-10\sqrt{2}+12\sqrt{3}=-4\sqrt{2}\)

b: \(=\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}=\sqrt{4-3}=1\)