Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, A = \(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{a^2\left(a+1\right)+\left(a+1\right)\left(a-1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)
b, Gọi UCLN(a2 + a - 1,a2 + a + 1) là d
Ta có: a2 + a - 1 \(⋮\)d
a2 + a + 1 \(⋮\)d
=> (a2 + a - 1) - (a2 + a + 1) \(⋮\)d
=> 2 \(⋮\)d => d = {1;-1;2;-2}
Mà a2 + a - 1 = a(a + 1) - 1 lẻ => d lẻ => d không thể bằng 2;-2 => d = {1;-1}
Vậy A tối giản
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{101}}\)
\(\Rightarrow2A-A=1-\frac{1}{2^{101}}\)
\(\Rightarrow A=\frac{2^{101}-1}{2^{101}}\)
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{10}}\)
\(3A=3+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{10}}+\frac{1}{3^{11}}\)
\(3A-A=\left(3+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{11}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{10}}\right)\)
\(3A-A=3+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{10}}+\frac{1}{3^{11}}-\frac{1}{3}-\frac{1}{3^2}-...-\frac{1}{3^{10}}\)
\(2A=3-\frac{1}{3^{10}}\)
\(A=\frac{3-\frac{1}{3^{10}}}{2}\)
LỚP 6 MÌNH NGHĨ BẠN NÊN TÌM HIỂU THÊM PHẦN NÀY VỚI DÃY SỐ THEO QUY LUẬT NHÉ. CÓ BÀI NÀO KHÓ THÌ NÓI MÌNH GIẢI CHO. NHÉ
Đặt \(B=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\)
\(=\left(1+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+\left(\frac{1}{5}+\frac{1}{95}\right)+...+\left(\frac{1}{49}+\frac{1}{51}\right)\)
\(=\frac{100}{99}+\frac{100}{3\times97}+\frac{100}{5\times95}+...+\frac{100}{49\times51}\)
\(=100\left(\frac{1}{99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{49\times51}\right)\)
Đặt \(C=\frac{1}{1\times99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{97\times3}+\frac{1}{99\times1}\)
\(=2\left(\frac{1}{99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{49\times51}\right)\)
\(A=\frac{B}{6}=\frac{100}{2}=50\)
Vậy \(A=50\)
A em tự tính nhé
b) B = 1+ 3 + 32+...+399
3B = 3+ 32+33+...+3100
do đó 3B-B= (3+32+33+...+3100) - ( 1+3+32+...+399)
2B= 3100-1
B= (3100-1) : 2
c) \(C=1+\frac{1}{3}+\frac{1}{6}+...+\frac{2}{x.\left(x+1\right)}\)
\(C=1+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x.\left(x+1\right)}\)
\(C=1+\frac{1}{2}.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x.\left(x+1\right)}\right)\)
\(C=1+\frac{1}{2}.\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}\right)\)
\(C=1+\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)\)
\(C=1+\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{x+1}\right)\)
Phần c thế này thôi vì ko có giá trị x cụ thể .
d) \(D=\frac{9}{8}.\frac{16}{15}.\frac{25}{24}.....\frac{8100}{8099}\)
\(D=\frac{9.16.25....8100}{8.15.24....8099}\)
\(D=\frac{3.3.4.4.5.5....90.90}{2.4.3.5.4.6.....89.91}\)
\(D=\frac{\left(3.4.5...90\right).\left(3.4.5...90\right)}{\left(2.3.5...89\right).\left(4.5.6...91\right)}\)
\(D=\frac{3.4.5...90}{2.3.4...89}.\frac{3.4.5...90}{4.5.6...91}\)
\(D=\frac{90}{2}.\frac{3}{91}\)
\(D=45.\frac{3}{91}=\frac{135}{91}\)
Ta có: \(A=\frac{2008+\frac{2007}{2}+\frac{2006}{3}+....+\frac{2}{2007}+\frac{1}{2008}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2008}+\frac{1}{2009}}\)
Xét tử : \(2008+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)
\(=\left(1+1+...+1\right)+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)( có 2008 số hạng 1 )
\(=\left(1+\frac{2007}{2}\right)+\left(1+\frac{2006}{3}\right)+...+\left(1+\frac{2}{2007}\right)+\left(1+\frac{1}{2008}\right)+1\)
\(=\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2007}+\frac{2009}{2008}+\frac{2009}{2009}\)
\(=2009\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)\)
Ghép tử và mẫu....
Vậy A = 2009
Cả tử số và mẫu số đều là số có hai chữ số
+) Trên tử: chữ số hàng chục nhỏ hơn chữ số hàng đơn vị
+) Dưới mẫu: chữ số hàng chục lớn hơn chữ số hàng đơn vị
\(S=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^n}\)
\(\Rightarrow3S=3+1+\frac{1}{3}+...+\frac{1}{3^{n-1}}\)
\(\Rightarrow3S-S=3-\frac{1}{3^n}\)
\(\Rightarrow2S=\frac{3^{n+1}-1}{3^n}\)
\(\Rightarrow S=\frac{3^{n+1}-1}{2\cdot3^n}\)