Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\frac{1}{\sqrt{x-1}}+\frac{1}{\sqrt{x+1}}\right):\left(\frac{1}{\sqrt{x-1}}+\frac{1}{\sqrt{x+1}}\right)\)
\(A=\frac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x^2-1}}\times\frac{\sqrt{x^2-1}}{\sqrt{x+1}-\sqrt{x-1}}\)
\(A=\frac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x+1}-\sqrt{x-1}}\)
Thay \(x=\frac{a^2+b^2}{2ab}\)vào A, ta được :
\(A=\frac{\sqrt{\frac{a^2+b^2}{2ab}+1}+\sqrt{\frac{a^2+b^2}{2ab}-1}}{\sqrt{\frac{a^2+b^2}{2ab}+1}-\sqrt{\frac{a^2+b^2}{2ab}-1}}\)
\(A=\frac{\sqrt{\frac{\left(a+b\right)^2}{2ab}}+\sqrt{\frac{\left(b-a\right)^2}{2ab}}}{\sqrt{\frac{\left(a+b\right)^2}{2ab}}-\sqrt{\frac{\left(b-a\right)^2}{2ab}}}\)
\(A=\frac{a+b\sqrt{\frac{1}{2ab}}+\left(b-a\right)\sqrt{\frac{1}{2ab}}}{a+b\sqrt{\frac{1}{2ab}}-\left(b-a\right)\sqrt{\frac{1}{2ab}}}\)
\(A=\frac{a+b+b-a}{a+b-b+a}\)
\(A=\frac{2b}{2a}\)
\(A=\frac{b}{a}\)
Ps : Nhớ k cho tui nhó, tui đã rất cố gắng rồi đấy. :)) K để lần sau có j tui giải giúp cho :)))
# Aeri #
1)))))))
\(\frac{2}{\sqrt{ab}}:\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}\right)^2-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)
\(=\frac{2}{\sqrt{ab}}:\frac{\left(\sqrt{b}-\sqrt{a}\right)^2}{\left(\sqrt{ab}\right)^2}-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)
\(=\frac{2}{\sqrt{ab}}.\frac{\left(\sqrt{ab}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)^2}-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)
\(=\frac{2\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)^2}-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)
\(=\frac{2\sqrt{ab}-a-b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)
\(=\frac{-\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)^2}=-1\)
\(\text{VT}=\left(1+\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1-\frac{x-\sqrt{x}}{\sqrt{x}-1}\right)=\left(1+\frac{\sqrt{x}.\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right)\left(1-\frac{\sqrt{x}.\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right)\)
\(=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x=\text{VP(điều phải chứng minh)}\)
c,\(\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a^2}-1+a}\right)\left(\sqrt{\frac{1}{a^2}-1}-\frac{1}{a}\right)\)
\(=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{\sqrt{1-a}.\sqrt{1-a}}{\sqrt{1-a}\left(\sqrt{1+a}-\sqrt{1-a}\right)}\right)\left(\frac{\sqrt{1-a^2}-1}{a}\right)\)
\(=\frac{\left(\sqrt{1+a}+\sqrt{1-a}\right)^2}{\left(1+a\right)-\left(1-a\right)}.\frac{\left(\sqrt{1-a^2}-1\right)}{a}=-1\)
M chỉ làm tiếp thôi nha, ko chép lại đề với đk đâu
a,
\(=\frac{a+2\sqrt{ab}+b-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\)\(\frac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\frac{a-2\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}-\left(\sqrt{a}-\sqrt{b}\right)\)
\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\sqrt{a}+\sqrt{b}\)
\(=\sqrt{a}-\sqrt{b}-\sqrt{a}+\sqrt{b}\)
\(=0\)
b,
\(=\left(a-b\right)\left(\sqrt{\frac{a+b}{a-b}}-1\right)\left(a-b\right)\left(\sqrt{\frac{a+b}{a-b}}+1\right)\)
\(=\left(a-b\right)^2\left(\frac{a+b}{a-b}-1\right)\)
\(=\left(a-b\right)^2\cdot\frac{a+b-a+b}{a-b}\)
\(=\left(a-b\right)2b=2ab-2b^2\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)
\(a,A=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right):\left(\frac{1}{1+\sqrt{x}}+\frac{2}{x-1}\right)\)
\(=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x\left(\sqrt{x}-1\right)}\right):\left(\frac{1-\sqrt{x}}{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)}-\frac{2}{1-x}\right)\)
\(=\left(\frac{x.\sqrt{x}}{x.\left(\sqrt{x}-1\right)}-\frac{1}{x\left(\sqrt{x}-1\right)}\right):\left(\frac{1-\sqrt{x}}{1-x}-\frac{2}{1-x}\right)\)
\(=\frac{x.\sqrt{x}-1}{x\left(\sqrt{x}-1\right)}.\frac{1-x}{-\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(x.\sqrt{x}-1\right)\left(1-x\right)}{x\left(1-x\right)}=\frac{\sqrt{x^3}-1}{x}\)
\(b,\)\(A=\frac{\sqrt{x}^3-1}{x}=\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x}\)
Để A > 0 \(\Rightarrow\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x}>0\)
Mà \(x>0\)và \(x+\sqrt{x}+1>0\)( do x lớn hơn 0 )
\(\Rightarrow\sqrt{x}-1>0\)
\(\Rightarrow\sqrt{x}>1\Leftrightarrow\sqrt{x}>\sqrt{1}\Leftrightarrow x>1\)
Bài 1 :
a) \(P=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}}{x-2\sqrt{x}+1}\)
\(P=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{1}{\sqrt{x}-1}\right).\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)
\(P=\frac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}-1}{\sqrt{x}}\)
\(P=\frac{\sqrt{x}+1}{x}\)
b) \(P>\frac{1}{2}\)
\(\Leftrightarrow\frac{\sqrt{x}+1}{x}>\frac{1}{2}\)
\(\Leftrightarrow\frac{\sqrt{x}+1}{x}-\frac{1}{2}>0\)
\(\Leftrightarrow\frac{\sqrt{x}+1-2x}{x}>0\)
\(\Leftrightarrow\sqrt{x}-2x+1>0\left(x>0\right)\)
\(\Leftrightarrow\sqrt{x}+x^2-2x+1-x^2>0\)
\(\Leftrightarrow\sqrt{x}+x^2+\left(x-1\right)^2>0\left(\forall x>0\right)\)
Vậy P > 1/2 với mọi x> 0 ; x khác 1
Bài 2 :
a) \(K=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}+a}+\frac{2}{a-1}\right)\)
\(K=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{1}{\sqrt{a}\left(\sqrt{a}+1\right)}+\frac{2}{a-1}\right)\)
\(K=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{a-1+2\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}\left(a-1\right)\left(\sqrt{a}+1\right)}\)
\(K=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\sqrt{a}\left(a-1\right)\left(\sqrt{a}-1\right)}{a-1+2a+2\sqrt{a}}\)
\(K=\frac{\left(a-1\right)^2}{3a+2\sqrt{a}-1}\)
b) \(a=3+2\sqrt{2}=2+2\sqrt{2}+1=\left(\sqrt{2}+1\right)^2\)( thỏa mãn ĐKXĐ )
Thay a vào biểu thức K , ta có :
\(K=\frac{\left(3+2\sqrt{2}-1\right)^2}{3\left(3+2\sqrt{2}\right)+2\sqrt{\left(\sqrt{2}+1\right)^2}-1}\)
\(K=\frac{\left(2+2\sqrt{2}\right)^2}{9+6\sqrt{2}+2\left|\sqrt{2}+1\right|-1}\)
\(K=\frac{\left(2+2\sqrt{2}\right)^2}{8+6\sqrt{2}+2\sqrt{2}+2}\)
\(K=\frac{\left(2+2\sqrt{2}\right)^2}{10+8\sqrt{2}}\)
\(B=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right)\div\left(\frac{1}{\sqrt{x}+1}+\frac{2}{x-1}\right)\)
\(=\frac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\frac{\sqrt{x}-1+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x-1}\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}}.\left(\sqrt{x}-1\right)\)
\(=\frac{x-1}{\sqrt{x}}\)
\(A=\left(\frac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{\left(x-1\right)\left(x+1\right)}}\right).\left(\frac{\sqrt{\left(x-1\right)\left(x+1\right)}}{\sqrt{x+1}-\sqrt{x-1}}\right)=\frac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x+1}-\sqrt{x-1}}\)
\(=\frac{\left(\sqrt{x+1}+\sqrt{x-1}\right)^2}{2}=\frac{2\left(x+\sqrt{x^2-1}\right)}{2}=x+\sqrt{x^2-1}\)
Thế vào rồi tính nhé
\(\)
Ta có: \(A=\left(\frac{1}{\sqrt{x+1}}+\frac{1}{\sqrt{x-1}}\right):\left(\frac{1}{\sqrt{x+1}}-\frac{1}{\sqrt{x-1}}\right)\) \(\left(ĐK:x\ge1\right)\)
\(\Leftrightarrow A=\left(\frac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x+1}.\sqrt{x-1}}\right).\left(\frac{\sqrt{x+1}.\sqrt{x-1}}{\sqrt{x+1}-\sqrt{x-1}}\right)\)
\(\Leftrightarrow A=\frac{\left(\sqrt{x+1}+\sqrt{x-1}\right).\left(\sqrt{x+1}-\sqrt{x-1}\right)}{\left(\sqrt{x+1}-\sqrt{x-1}\right)^2}\)
\(\Leftrightarrow A=\frac{x+1-x+1}{x+1+x-1+2\sqrt{\left(x+1\right)\left(x-1\right)}}\)
\(\Leftrightarrow A=\frac{2}{2x+2\sqrt{x^2-1}}\)
Thay \(x=\frac{a^2+b^2}{2ab}\)vào phương trình \(A,\)ta có:
\(A=\frac{1}{\frac{a^2+b^2}{2ab}+\sqrt{\left(\frac{a^2+b^2}{2ab}+1\right)\left(\frac{a^2+b^2}{2ab}-1\right)}}\)
\(\Leftrightarrow A=\frac{1}{\frac{a^2+b^2}{2ab}+\sqrt{\left(\frac{a^2+2ab+b^2}{2ab}\right)\left(\frac{a^2-2ab+b^2}{2ab}\right)}}\)
\(\Leftrightarrow A=\frac{1}{\frac{a^2+b^2}{2ab}+\sqrt{\frac{\left(a+b\right)^2\left(a-b\right)^2}{\left(2ab\right)^2}}}\)
\(\Leftrightarrow A=\frac{1}{\frac{a^2+b^2}{2ab}+\frac{\left(a+b\right)\left(a-b\right)}{2ab}}\)
\(\Leftrightarrow A=\frac{1}{\frac{a^2+b^2+a^2-b^2}{2ab}}\)
\(\Leftrightarrow A=\frac{2ab}{2a^2}\)
\(\Leftrightarrow A=\frac{b}{a}\)
Chúc bn hok tốt