Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 2100 - 299 + 298 - 297 + ... + 22 - 2
= ( 2100 + 298 + ... + 22 ) - ( 299 + 297 + ... + 2 )
= ( 2100 + 298 + ... + 22 ) - 2( 299 + 297 + ... + 2 ) + ( 299 + 297 + ... + 2 )
= 299 + 297 + ... + 2
=> 4A = 2103 + 299 + ... + 23
=> 3A = 2103 - 2
=> A = \(\frac{2^{103}-2}{3}\)
b) B = 2100 - 299 + 298 - 297 + ...+ 22 - 2
=> B x 2 = 2101 - 2100 + 299 - 298 + ...23 - 22
=> B x 2 + B = (2101 - 2100 + 299 - 298 + ...23 - 22 ) + (2100 - 299 + 298 - 297 + ...+ 22 - 2)
<=> B x 3 = 2101 - 2 = 2. ( 299 - 1)
=> B = \(\frac{2.\left(2^{99}-1\right)}{3}\)
Phần c) Làm tương tự Lấy C x 3 rồi + với C.
a) \(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
\(2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)
\(\Rightarrow A+2A=2^{101}-2\)
\(A\left(1+2\right)=2^{101}-2\)
\(A.3=2^{101}-2\)
\(A=\frac{2^{101}-2}{3}\)
b) \(B=3^{100}-3^{99}+3^{98}-3^{97}+...+3^2-3\)
\(3B=3^{101}-3^{100}+3^{99}-3^{98}+...+3^3-3^2\)
\(\Rightarrow B+3B=3^{101}-3\)
\(B\left(1+3\right)=3^{101}-3\)
\(4B=3^{101}-3\)
\(B=\frac{3^{101}-3}{4}\)
A = 2100 - 299 + 298 - 297 + ... + 22 - 2
2A = 2101 - 2100 + 299 - 298 + ... + 23 - 22
2A + A = ( 2101 - 2100 + 299 - 298 + ... + 23 - 22 ) + ( 2100 - 299 + 298 - 297 + ... + 22 - 2 )
3A = 2101 - 2
\(\Rightarrow\)A = \(\frac{2^{101}-2}{3}\)
Ta có :
\(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2\)\(-2\)
\(2A=2^{99}-2^{98}+2^{97}-2^{96}+...+2-1\)
\(2A+A=\left(2^{99}-2^{98}+2^{97}-2^{96}+...+2-1\right)+\left(2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\right)\)
\(\Rightarrow3A=-1+2^{100}\)
\(\Rightarrow A=\frac{2^{100}-1}{3}\)
Ủng hộ mk nha !!! ^_^
Ta có:2A=\(2^{101}-2^{100}+2^{99}-2^{98}+....+2^3-2^2.\)
=>2A-A=A=\(2^{101}-2\)
1/2 + 2/3 + 3/4 + 4/5 + 5/6 + 6/7 + 7/8 + 8/9 + ........+ 95/96 + 96/97 + 97/98 + 98/99 + 99/100 = ?
Số các số hạng là:
(2000 - 100) : 1 + 1 = 1901
Tổng là:
(2000 + 100) x 1901 : 2 = 1996050
Đáp số : 1996050
M=\(2^{100}-2^{99}+2^{98}-2^{97}+....+2^2-2\)
=> 2M=\(2^{101}-2^{100}+2^{99}-2^{98}+....+2^3-2^2\)
=> 2M+M=3M\(\left(2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\right)+\left(2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\right)\)=\(2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2+2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
=\(2^{101}-\left(2^{100}-2^{100}\right)+\left(2^{99}-2^{99}\right)-\left(2^{98}-2^{98}\right)+...+\left(2^3-2^3\right)-\left(2^2-2^2\right)-2\)
= \(2^{101}-2\)
=> M=\(\frac{2^{101}-2}{3}\)