K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2018

=15√20 -3√45+2√5

=15\(\sqrt{4x5}\)-3\(\sqrt{9x5}\)+2√5

=30√5 -9√5+2√5

=23√5

23 tháng 7 2018

\(\left(15\sqrt{200}-3\sqrt{450}+2\sqrt{50}\right):\sqrt{10}\) =\(\left(150\sqrt{2}-45\sqrt{2}+10\sqrt{2}\right):\sqrt{10}\)

                                                                                                =\(115\sqrt{2}:\sqrt{10}\)

 chắc vậy

11 tháng 5 2017

toán lớp 9 mik mới học lớp 6 thôi

4 tháng 7 2015

đk: x>=0; x khác 3

a) \(P=\frac{\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}-\frac{5}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}+\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}-3}=\frac{\sqrt{x}-3-5+x-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}=\frac{x+\sqrt{x}-12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)

\(P=\frac{\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+4}{\sqrt{x}+2}\)

b) \(P=\frac{\sqrt{x}+2+2}{\sqrt{x}+2}=1+\frac{2}{\sqrt{x}+2}\)

ta có: \(x\ge0\Rightarrow\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+2\ge2\Leftrightarrow\frac{2}{\sqrt{x}+2}\le1\Leftrightarrow1+\frac{2}{\sqrt{x}+2}\le2\Rightarrow MaxP=2\Rightarrow x=0\)

14 tháng 6 2018

\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+2\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1+\frac{\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1+\sqrt{2}\)

6 tháng 9 2019

\(đkxđ\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

\(A=\)\(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}.\)

\(=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\)\(\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(=\frac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)\(=\frac{-5x+5\sqrt{x}+2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{-5\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)\(=\frac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

\(A=\frac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

\(\Rightarrow\frac{-5\sqrt{x}+2}{\sqrt{x}+3}=-\frac{1}{7}\Rightarrow-7\left(-5\sqrt{x}+2\right)=\sqrt{x}+3\)

\(\Rightarrow35\sqrt{x}-14=\sqrt{x}+3\)

\(\Rightarrow34\sqrt{x}=17\)

\(\Rightarrow\sqrt{x}=\frac{1}{2}\Rightarrow x=\frac{1}{4}\left(tm\right)\)

Vậy với \(x=\frac{1}{4}\)thì \(A=-\frac{1}{7}\)

23 tháng 11 2019

căn bậc hai không có số âm

\(\sqrt{-1}\) đó

23 tháng 11 2019

√x-1 nha bn

14 tháng 10 2017

\(\sqrt{3-2\sqrt{2}}=\sqrt{1-2\sqrt{2}+2}=\sqrt{\left(1-\sqrt{2}\right)^2}=\left|1-\sqrt{2}\right|\)

\(\sqrt{5-2\sqrt{6}}=\sqrt{2-2\sqrt{6}+3}=\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}=\left|\sqrt{2}-\sqrt{3}\right|\)

\(1< \sqrt{2};\sqrt{2}< \sqrt{3}\)

\(\Rightarrow\sqrt{3-2\sqrt{2}}+\sqrt{5-2\sqrt{6}}=\sqrt{2}-1+\sqrt{3}-\sqrt{2}\)

                                                                      \(=\sqrt{3}-1\)

14 tháng 10 2017

ta có: \(\sqrt{3-2\sqrt{2}}+\sqrt{5-2\sqrt{6}}=\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}.\)

\(\sqrt{2}-1+\sqrt{3}-\sqrt{2}=\sqrt{3}-1\)