K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2018

Với a ≥ 0; a ≠ 1 ta có:

\(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}=\dfrac{(1-\sqrt{a})\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}\)\(=1+\sqrt{a}+a\)

28 tháng 5 2023

\(M=\left(\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}+1\right)\left(\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}-1\right)=\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)=a-1\)

6 tháng 4 2020
https://i.imgur.com/oob0iDc.jpg
3 tháng 7 2021

a) 

\(P=\left(\dfrac{b-a}{\sqrt{b}-\sqrt{a}}-\dfrac{a\sqrt{a}-b\sqrt{b}}{a-b}\right):\dfrac{\left(\sqrt{b}-\sqrt{a}\right)^2+\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\)

\(=\left[\sqrt{b}+\sqrt{a}-\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\right]:\dfrac{b-\sqrt{ab}+a}{\sqrt{a}+\sqrt{b}}\)

\(=\left(\sqrt{b}+\sqrt{a}-\dfrac{a+\sqrt{ab}+b}{\sqrt{a}+\sqrt{b}}\right).\dfrac{\sqrt{a}+\sqrt{b}}{a-\sqrt{ab}+b}\)

\(=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2-a-\sqrt{ab}-b}{\sqrt{a}+\sqrt{b}}.\dfrac{\sqrt{a}+\sqrt{b}}{a-\sqrt{ab}+b}\)

\(=\dfrac{\sqrt{ab}}{\sqrt{a}+\sqrt{b}}.\dfrac{\sqrt{a}+\sqrt{b}}{a-\sqrt{ab}+b}\)\(=\dfrac{\sqrt{ab}}{a-\sqrt{ab}+b}\)

b) \(P=\dfrac{\sqrt{ab}}{a-\sqrt{ab}+b}=\dfrac{\sqrt{ab}}{\left(\sqrt{a}-\dfrac{1}{2}\sqrt{b}\right)^2+\dfrac{3}{4}b}\)

Vì \(\left(\sqrt{a}-\dfrac{1}{2}\sqrt{b}\right)^2+\dfrac{3}{4}b>0;\forall a\ge0;b\ge0;a\ne b\)

\(\sqrt{ab}\ge0\)\(\forall a\ge0;b\ge0\)

\(\Rightarrow P=\dfrac{\sqrt{ab}}{\left(\sqrt{a}-\dfrac{1}{2}\sqrt{b}\right)^2+\dfrac{3}{4}b}\ge0\)

Vậy...

6 tháng 7 2021

cảm ơn tất cả mọi người

Câu 1: 

a: \(P=\dfrac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

\(=\dfrac{a-\sqrt{a}-12}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\)

b: Để P<1 thì \(\dfrac{\sqrt{a}-4-\sqrt{a}+2}{\sqrt{a}-2}< 0\)

\(\Leftrightarrow\sqrt{a}-2< 0\)

hay 0<a<4

25 tháng 7 2018

\(a.P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)

Để : \(P\in Z\Leftrightarrow\dfrac{2}{\sqrt{x}+1}\in Z\Leftrightarrow\left(\sqrt{x}+1\right)\in\left\{\pm1;\pm2\right\}\)

+) \(\sqrt{x}+1=1\Leftrightarrow x=0\left(TM\right)\)

+) \(\sqrt{x}+1=-1\Leftrightarrow vô-n^o\)

+) \(\sqrt{x}+1=2\Leftrightarrow x=1\left(KTM\right)\)

+) \(\sqrt{x}+1=-2\Leftrightarrow vô-n^o\)

KL.............

\(b.Q=\dfrac{\sqrt{a}+1}{\sqrt{a}+2}=\dfrac{\sqrt{a}+2-1}{\sqrt{a}+2}=1-\dfrac{1}{\sqrt{a}+2}\)

Để : \(Q\in Z\Leftrightarrow\dfrac{1}{\sqrt{a}+2}\in Z\Leftrightarrow\left(\sqrt{a}+2\right)\in\left\{\pm1\right\}\)

+) \(\sqrt{a}+2=1\Leftrightarrow vô-n^o\)

+) \(\sqrt{a}+2=-1\Leftrightarrow vô-n^o\)

KL............

\(c.A=\dfrac{\sqrt{a}-1}{\sqrt{a}-4}=\dfrac{\sqrt{a}-4+3}{\sqrt{a}-4}=1+\dfrac{3}{\sqrt{a}-4}\)

Để : \(A\in Z\Leftrightarrow\dfrac{3}{\sqrt{a}-4}\in Z\Leftrightarrow\left(\sqrt{a}-4\right)\in\left\{\pm1;\pm3\right\}\)

+) \(\sqrt{a}-4=1\Leftrightarrow a=25\left(TM\right)\)

+) \(\sqrt{a}-4=-1\Leftrightarrow a=9\left(TM\right)\)

+) \(\sqrt{a}-4=3\Leftrightarrow a=49\left(TM\right)\)

+) \(\sqrt{a}-4=-3\Leftrightarrow a=1\left(TM\right)\)

KL............

P/s : Mình thấy đề bài b sai nhé , mẫu phải là \(\sqrt{a}-2\) thì mới phù hợp ĐK đã cho .

28 tháng 5 2023

\(A=\left(\dfrac{1-a\sqrt{a}}{1-a\sqrt{a}}+\sqrt{a}\right).\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\left(dkxd:a\ge0,a\ne1\right)\)

\(=\left(1+\sqrt{a}\right).\dfrac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}\)

\(=\dfrac{\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)\left(1-\sqrt{a}\right)}{\left(1-a\right)^2}\)

\(=\dfrac{\left(1-a\right)\left(1-\sqrt{a}\right)}{\left(1-a\right)^2}\)

\(=\dfrac{1-\sqrt{a}}{1-a}\) 

Vậy \(A=\dfrac{1-\sqrt{a}}{1-a}\) với \(a\ge0,a\ne1\)