Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt x = a+b , y = b+c , z = c+a
Thì biểu thức trên trở thành \(x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xy-3xyz\)
\(=\left(x+y+z\right)\left(x^2+y^2+2xy-xz-yz+z^2\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
Từ đó thay a,b,c vào rồi rút gọn :)
Phân tích mẫu thức thành nhân tử :
\(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)+b^2c-ab^2+ac^2-bc^2\)
\(=a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b^2-c^2\right)\)
\(=\left(b-c\right)\left(a^2+bc-ab-ac\right)\)
\(=\left(b-c\right)\left[a\left(a-b\right)-c\left(a-b\right)\right]=\left(b-c\right)\left(a-c\right)\left(a-b\right).\)
Do đó : \(A=\frac{\left(b-c\right)^3+\left(c-a\right)^3+\left(a-b\right)^3}{-\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
Nhận xét : Nếu \(x+y+z=0\) thì \(x^3+y^3+z^3=3xyz.\)
Đặt \(b-c=x,c-a=y,a-b=z\) thì \(x+y+z=0\)
Theo nhận xét trên : \(A=\frac{x^3+y^3+z^3}{-xyz}=\frac{3xyz}{-xyz}=-3.\)
Tử:
(b - c)3 + (c - a)3 + (a - b)3
= (b - c + c - a + a - b)3 - 3(b - c + c - a)(b - c + a - b)(c - a + a - b)
= 0 - 3(b - a)(a - c)(c - b)
= 3(a - b)(a - c)(c - b)
Mẫu:
a2(b - c) + b2(c - a) + c2(a - b)
= a2(b - c) + b2c - ab2 + ac2 - bc2
= a2(b - c) - a(b2 - c2) + bc(b - c)
= a2(b - c) - a(b - c)(b + c) + bc(b - c)
= (b - c)(a2 - ab - ac + bc)
= (b - c)[a(a - b) - c(a - b)]
= (b - c)(a - b)(a - c)
\(A=\frac{3\left(a-b\right)\left(a-c\right)\left(c-b\right)}{\left(b-c\right)\left(a-b\right)\left(a-c\right)}\)
\(=\frac{3\left(c-b\right)}{b-c}\)
Phân tích mẫu \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)+b^2c-ab^2+c^2a-c^2b\)
\(=a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b^2-c^2\right)\)
\(=a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b+c\right)\left(b-c\right)\)
\(=\left(b-c\right)\left(a^2+bc-ab-ac\right)=\left(b-c\right)\left[a\left(a-c\right)-b\left(a-c\right)\right]\)
\(=\left(b-c\right)\left(a-b\right)\left(a-c\right)=-\left(b-c\right)\left(a-b\right)\left(c-a\right)\)
Đặt b - c = x, c - a = y, a - b = z
=> x + y + z = b - c + c - a + a - b = 0
Từ x+y+z=0 => x3+y3+z3=3xyz (tự c/m)
=>\(A=\frac{x^3+y^3+z^3}{-xyz}=\frac{3xyz}{-xyz}=-3\)
a,\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a^2b+b^2a+c^2a+ca^2+b^2c+c^2b\right)\)
Tương tự :
\(\left(b+c-a\right)^3=b^3+c^3-a^3+3\left(a^2b-b^2a+ca^2-ac^2+b^2c+c^2b\right)\)
\(\left(b+a-c\right)^3=b^3-c^3+a^3+3\left(a^2b+b^2a-ca^2+ac^2-b^2c+c^2b\right)\)
\(\left(a+c-b\right)^3=c^3+a^3-b^3+3\left(-a^2b+b^2a+ca^2+ac^2+b^2c-c^2b\right)\)
Biểu thức sau khi rút gọn ta được
24abc
b,\(\left(a+b\right)^3=a^3+b^3+3\left(a^2b+b^2a\right)\)
\(\left(c+b\right)^3=c^3+b^3+3\left(c^2b+b^2c\right)\)
\(\left(a+c\right)^3=a^3+c^3+3\left(a^2c+b^2c\right)\)
=>\(\left(a+b\right)^3+\left(b+c\right)^3+\left(c+a\right)^3=\)\(2\left(a^2+b^2+c^2\right)+3\left(a^2b+b^2a+c^2a+ca^2+b^2c+c^2b\right)\)
Lại có
\(3\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(3\left(a^2b+b^2a+c^2a+ca^2+b^2c+c^2b+2abc\right)\right)\)
Biểu thức khi đó trở thành
\(2\left(a^2+b^2+c^2\right)-6abc=2\left(a^2+b^2+c^2-3abc\right)\)
Tặng vk iu
\(A=\left(a+b+c\right)^3+\left(a-b-c\right)^3-6a\left(b+c\right)^2\)
\(=\left[a+\left(b+c\right)\right]^3+\left[a-\left(b+c\right)\right]^3-6a\left(b+c\right)^2\)
\(=a^3+3a^2\left(b+c\right)+3a\left(b+c\right)^2+\left(b+c\right)^3+a^3-3a^2\left(b+c\right)+3a\left(b+c\right)^2-\left(b+c\right)^3-6a\left(b+c\right)^2\)
\(=2a^3\)
Bài giải:
a) (a + b)2 – (a – b)2 = (a2 + 2ab + b2) – (a2 – 2ab + b2)
= a2 + 2ab + b2 – a2 + 2ab - b2 = 4ab
Hoặc (a + b)2 – (a – b)2 = [(a + b) + (a – b)][(a + b) – (a – b)]
= (a + b + a – b)(a + b – a + b)
= 2a . 2b = 4ab
b) (a + b)3 – (a – b)3 – 2b3
= (a3 + 3a2b + 3ab2 + b3) – (a3 – 3a2b + 3ab2 – b3) – 2b3
= a3 + 3a2b + 3ab2 + b3 – a3 + 3a2b - 3ab2 + b3 – 2b3
= 6a2b
Hoặc (a + b)3 – (a – b)3 – 2b3 = [(a + b)3 – (a – b)3] – 2b3
= [(a + b) – (a – b)][(a + b)2 + (a + b)(a – b) + (a – b)2] – 2b3
= (a + b – a + b)(a2 + 2ab + b2 + a2 – b2 + a2 – 2ab + b2) – 2b3
= 2b . (3a2 + b2) – 2b3 = 6a2b + 2b3 – 2b3 = 6a2b
c) (x + y + z)2 – 2(x + y + z)(x + y) + (x + y)2
= x2 + y2 + z2+ 2xy + 2yz + 2xz – 2(x2 + xy + yx + y2 + zx + zy) + x2 + 2xy + y2
= 2x2 + 2y2 + z2 + 4xy + 2yz + 2xz – 2x2 – 4xy – 2y2 – 2xz – 2yz = z2
Sửa đề cho nó đẹp
\(\frac{\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3}{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}\)
\(=\frac{3\left(a-b\right)\left(a-c\right)\left(c-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=-3\)