Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta xét biểu thức sau :
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}\left[\left(\sqrt{n+1}\right)^2-\left(\sqrt{n}\right)^2\right]}\)
\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)(với n > 0)
Áp dụng : \(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)
\(=\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}\right)+\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)+...+\left(\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\right)\)
\(=1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}=1-\frac{1}{\sqrt{100}}=1-\frac{1}{10}=\frac{9}{10}\)
Ta có
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n^2+n}\)(nhân lượng liên hiệp nhé)
\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}.\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Áp dụng vào bài toán ta có
\(\frac{1}{2\sqrt{1}+1.\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{100}}=1-\frac{1}{10}=\frac{9}{10}\)
Câu 1,2,3 Ez quá rồi :3
Câu 4:
Tổng quát:
\(\frac{1}{\sqrt{a}+\sqrt{a+1}}=\frac{\sqrt{a}-\sqrt{a+1}}{a-a-1}=\sqrt{a+1}-\sqrt{a}.\) Game là dễ :v
Câu 5 ko khác câu 4 lắm :v
Câu 5:
Tổng quát:
\(\frac{1}{\sqrt{a}-\sqrt{a+1}}=\frac{\sqrt{a}+\sqrt{a+1}}{a-a-1}=-\sqrt{a}-\sqrt{a+1}.\) Game là dễ :v
\(\frac{2014}{\sqrt{1}+\sqrt{2}}+\frac{2014}{\sqrt{2}+\sqrt{3}}+...+\frac{2014}{\sqrt{99}+\sqrt{100}}\)
\(=2014.\left(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}\right)\)
\(=2014.\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)\)
\(=2014.\left(\sqrt{100}-\sqrt{1}\right)=2014.9=18126\)
\(\frac{2014}{\sqrt{1}+\sqrt{2}}+\frac{2014}{\sqrt{2}+\sqrt{3}}+.....+\frac{2014}{\sqrt{9}+\sqrt{100}}\)
\(=\sqrt{1}-\sqrt{2}+\sqrt{3}-\sqrt{2}+....+\sqrt{100}-\sqrt{999}\)
\(=\sqrt{100}-1\)
\(=9\)
P/s: Không chắc à
\(\forall k\ge0\)ta có :
\(\frac{1}{\sqrt{k}+\sqrt{k+1}}=\frac{\sqrt{k+1}-\sqrt{k}}{\left(\sqrt{k}+\sqrt{k+1}\right)\left(\sqrt{k+1}-\sqrt{k}\right)}=\frac{\sqrt{k+1}-\sqrt{k}}{k+1-k}=\sqrt{k+1}-\sqrt{k}\)
Bạn áp dụng công thức này vào dãy trên ta sẽ có các số hạng triệt tiêu đi nhau và ra kết quả
Lời giải:
\(A=\sqrt{1+\frac{1}{a^2}+\frac{1}{(a+1)^2}}=\sqrt{1+2.\frac{1}{a}+\frac{1}{a^2}+\frac{1}{(a+1)^2}-\frac{2}{a}}\)
\(=\sqrt{(1+\frac{1}{a})^2+\frac{1}{(a+1)^2}-\frac{2}{a}}=\sqrt{\frac{(a+1)^2}{a^2}+\frac{1}{(a+1)^2}-2.\frac{a+1}{a}.\frac{1}{a+1}}\)
\(=\sqrt{(\frac{a+1}{a}-\frac{1}{a+1})^2}=|\frac{a+1}{a}-\frac{1}{a+1}|=|1+\frac{1}{a}-\frac{1}{a+1}|\)
b)
Áp dụng công thức trên vào bài toán:
\(B=\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+....+\sqrt{1+\frac{1}{99^2}+\frac{1}{100^2}}\)
\(=|1+\frac{1}{1}-\frac{1}{2}|+|1+\frac{1}{2}-\frac{1}{3}|+....+|1+\frac{1}{99}-\frac{1}{100}|\)
\(=99+(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100})\)
\(=99+1-\frac{1}{100}=100-\frac{1}{100}\)
Sai đề nha bn \(A=\sqrt{1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}}\)
\(A=\sqrt{\frac{a^2\left(a+1\right)^2+\left(a+1\right)^2+a^2}{a^2\left(a+1\right)^2}}\)\(=\sqrt{\frac{a^2\left(a+1\right)^2+2a^2+2a+1}{a^2\left(a+1\right)^2}}\)
\(=\sqrt{\frac{\left[a\left(a+1\right)^2\right]+2a\left(a+1\right)+1}{a^2\left(a+1\right)^2}}\) \(=\sqrt{\frac{\left[a\left(a+1\right)+1\right]^2}{a^2\left(a+1\right)^2}}\)
\(=\frac{a\left(a+1\right)+1}{a\left(a+1\right)}=1+\frac{1}{a\left(a+1\right)}=1+\frac{1}{a}-\frac{1}{a+1}\)
Áp dụng kết quả trên ta có :
\(B=1+1-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+...+1+\frac{1}{99}-\frac{1}{100}\)
\(=99+1-\frac{1}{100}=\frac{9999}{100}\)
\(A=\frac{\sqrt{3}-1}{1+\sqrt{1+\frac{\sqrt{3}}{2}}}+\frac{\sqrt{3}+1}{1-\sqrt{1-\frac{\sqrt{3}}{2}}}=\frac{\sqrt{3}-1}{1+\sqrt{\frac{2+\sqrt{3}}{2}}}+\frac{\sqrt{3}+1}{1-\sqrt{\frac{2-\sqrt{3}}{2}}}\)
\(=\frac{\sqrt{3}-1}{1+\frac{\sqrt{4+2\sqrt{3}}}{2}}+\frac{\sqrt{3}+1}{1-\frac{\sqrt{4-2\sqrt{3}}}{2}}=\frac{\sqrt{3}-1}{1+\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{2}}+\frac{\sqrt{3}+1}{1-\frac{\sqrt{\left(\sqrt{3}-1\right)^2}}{2}}\)
\(=\frac{\sqrt{3}-1}{\frac{3+\sqrt{3}}{2}}+\frac{\sqrt{3}+1}{\frac{3-\sqrt{3}}{2}}=\frac{2\left(\sqrt{3}-1\right)}{\sqrt{3}\left(\sqrt{3}+1\right)}+\frac{2\left(\sqrt{3}+1\right)}{\sqrt{3}\left(\sqrt{3}-1\right)}\)
\(=\frac{2}{\sqrt{3}}\left(\frac{4-2\sqrt{3}+4+2\sqrt{3}}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\right)=\frac{2}{\sqrt{3}}.\frac{8}{2}=\frac{8}{\sqrt{3}}=\frac{8\sqrt{3}}{3}\)
\(A=\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}\)
\(=\sqrt{2}-1+\sqrt{2}-\sqrt{3}+...+\sqrt{100}-\sqrt{99}\)
\(=-1+\sqrt{100}=\sqrt{100}-1=10-1=9\)
A = \(\frac{1}{1+\sqrt{2}}\) + \(\frac{1}{\sqrt{2}+\sqrt{3}}\) + . . . . . . . . . + \(\frac{1}{\sqrt{99+\sqrt{100}}}\)
= \(\sqrt{2}\) - 1 + \(\sqrt{2}\) - \(\sqrt{3}\) + . . . . . . . + \(\sqrt{100}\) - \(\sqrt{99}\)
= - 1 + \(\sqrt{100}\) = \(\sqrt{100}\) - 1 = 10 - 1 = 9