K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2016

Nhận xét: \(\text{ *)}\) Nếu  \(x+y+z=0\)  thì  \(x^3+y^3+z^3=3xyz\)     

Thật vậy,  từ  \(x+y+z=0\)

Suy ra:  \(x+y=-z\)  \(\left(\text{*}\right)\)

\(\Leftrightarrow\)  \(\left(x+y\right)^3=\left(-z\right)^3\)  

\(\Leftrightarrow\)  \(x^3+3x^2y+3xy^2+y^3=\left(-z\right)^3\)

\(\Leftrightarrow\)  \(x^3+y^3+z^3=-3x^2y-3xy^2\)

\(\Leftrightarrow\)  \(x^3+y^3+z^3=-3xy\left(x+y\right)\)

\(\Leftrightarrow\)  \(x^3+y^3+z^3=3xyz\)  (theo \(\left(\text{*}\right)\)  )

                                                              \(-------------\)

Theo giả thiết, ta có:

\(a+b+c=0\)

\(\Leftrightarrow\)  \(b+c=-a\)

\(\Leftrightarrow\)  \(\left(b+c\right)^2=\left(-a\right)^2\)

\(\Leftrightarrow\)  \(b^2+2bc+c^2=a^2\)

\(\Leftrightarrow\)  \(2bc=a^2-b^2-c^2\)

Tương tự, ta cũng có  \(2ac=b^2-a^2-c^2\)  \(;\) \(2ab=c^2-a^2-b^2\)

Mặt khác,  vì \(a+b+c=0\)  nên  \(a^3+b^3+c^3=3abc\)  (theo nhận xét trên)

Do đó,  \(A=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{a^3}{2abc}+\frac{b^3}{2abc}+\frac{c^3}{2abc}=\frac{a^3+b^3+c^3}{2abc}=\frac{3abc}{2abc}=\frac{3}{2}\)  (do  \(abc\ne0\)  

6 tháng 2 2016

tu a + b + c = 0 suy ra a= - (b+c) suy ra a^2 = (b+c)^2=b^2 +c^2 + 2bc                                                                                                    suy ra a^2 - b^2 - c^2 =2bc . tuong tu ta cung co b^2-a^2-c^2=2ac ; c^2- a^2 -b^2=2ab                                                                          do do A = a^2/2bc + b^2/2ac+c^2/2ab =a^3/2abc+b^3/2abc +c^3/2abc                                                                                                           lai co a+b+c=o nen a+b=-c suyra a^3+b^3+3ab(a+b)= -c^3 do do a^3 +b^3 +c^3=3abc                                                                     vay A=3abc/2abc=3/2 (abc khac 0 : a+b=c=o)

20 tháng 3 2017

 C=\(\frac{ab}{a^2+\left(b-c\right)\left(c+b\right)}+\frac{bc}{b^2+\left(c-a\right)\left(c+a\right)}\)+\(\frac{ac}{c^2+\left(a-b\right)\left(a+b\right)}\)

Vì a+b+c=0 =>-a=b+c ; -c=a+b ; -b=a+c

=>C=\(\frac{ab}{a^2-a\left(b-c\right)}+\frac{bc}{b^2-b\left(c-a\right)}+\frac{ac}{c^2-c\left(a-b\right)}\)

=\(\frac{ab}{a\left(a-b+c\right)}+\frac{bc}{b\left(b-c+a\right)}+\frac{ac}{c\left(c-a+b\right)}\)

=\(\frac{b}{-2b}+\frac{c}{-2c}+\frac{a}{-2a}\)

=\(\frac{-3}{2}\)

20 tháng 3 2017

thanks

15 tháng 1 2019

ta có: a + b + c = 0 => a+b = - c => a2 + 2ab + b2 = c2 => a2 + b2 - c2 = - 2ab

tương tự như trên, ta có: b2 + c2 - a2 = -2bc; c2 + a2 - b2 = -2ac

thay vào A, có:

\(A=\frac{1}{-2bc}-\frac{1}{2ca}-\frac{1}{2ab}\)

\(A=-\frac{1}{2}.\left(\frac{1}{bc}+\frac{1}{ca}+\frac{1}{ab}\right)=-\frac{1}{2}.\left(\frac{a+b+c}{abc}\right)=-\frac{1}{2}.\left(\frac{0}{abc}\right)=0\)

KL: A = 0 tại a + b + c = 0

12 tháng 4 2019

Có a + b + c = 0

=> a + b = - c

=> (a + b)2 = c2

=> a2 + b2 + 2ab = c2

=> a2 + b2 - c2 = - 2ab

Tương tự, b2 + c2 - a2 = - 2bc và c2 + a2 - b2 = - 2ca

Do đó \(A=\frac{ab}{-2ab}+\frac{bc}{-2bc}+\frac{ca}{-2ca}=-\frac{1}{2}-\frac{1}{2}-\frac{1}{2}=-\frac{3}{2}\)

a+b+c=0=>a+b=-c=>a2+b2+2ab=c2=>a2+b2-c2=-2ab

Tương tự b2+c2-a2=-2bc,c2+a2-b2=-2ac

=>\(A=\frac{-ab}{2ab}+\frac{-bc}{2bc}+\frac{-ca}{2ca}=\frac{-3}{2}\)

5 tháng 12 2016

jkghffffffffffffffffffffffffffffffffffffffffffffffffffff

13 tháng 12 2016

jkghffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff giống bạn đó Nguyễn Thế An

13 tháng 11 2016

Ta có: a + b = c <=> a2 + b2 + 2ab = c2 <=> a2 + b2 - c2 = - 2ab

Tương tự: a2 + c2 - b2 = - 2ac

b2 + c2 - a2 = - 2bc

Thế vào ta được

\(\frac{ab}{a^2+b^2-c^2}+\frac{bc}{b^2+c^2-a^2}+\frac{ac}{a^2+c^2-b^2}=-\frac{ab}{2ab}-\frac{bc}{2bc}-\frac{ac}{2ac}=-6\)

13 tháng 3 2017

=-6 ngo như bù

12 tháng 5 2018

Trong phần câu hỏi tương tự có nhé cậu !

12 tháng 5 2018

\(a+b+c=0\Rightarrow a+b=-c;a+c=-b;b+c=-a\)

ta có:

\(Q=\frac{ab}{\left(a^2-c^2\right)+b^2}+\frac{bc}{\left(b^2-a^2\right)+c^2}+\frac{ac}{\left(c^2-b^2\right)+a^2}\)

    \(=\frac{ab}{\left(a-c\right)\left(a+c\right)+b^2}+\frac{bc}{\left(b-a\right)\left(b+a\right)+c^2}+\frac{ac}{\left(c-b\right)\left(c+b\right)+a^2}\)

\(=\frac{ab}{-b\left(a-c\right)+\left(-b\right)^2}+\frac{bc}{-c\left(b-a\right)+\left(-c\right)^2}+\frac{ac}{-a\left(c-b\right)+\left(-a\right)^2}\)

\(=\frac{ab}{-b\left(a-c-b\right)}+\frac{bc}{-c\left(b-a-c\right)}+\frac{ac}{-a\left(c-b-a\right)}\)

\(=\frac{ab}{-\left(a-\left(c+b\right)\right)}+\frac{bc}{-\left(b-\left(a+c\right)\right)}+\frac{ac}{-\left(c-\left(b+a\right)\right)}=\frac{ab}{-\left(a--a\right)}+\frac{bc}{-\left(b--b\right)}+\frac{ac}{-\left(c--c\right)}\)

\(=\frac{ab}{-2a}+\frac{bc}{-2b}+\frac{ac}{-2c}=\frac{b}{-2}+\frac{c}{-2}+\frac{a}{-2}=\frac{b+c+a}{-2}=\frac{0}{-2}=0\)

vậy Q=0