Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn ơi hình như sai đề thì phải a bạn mình nghĩ phải là \(\left(x^2-x+2\right)^2\)
\(\left(x^2-x+2\right)+\left(x-2\right)^2=\left(x^2-x+2\right)+x^2-2^2\)
\(=x^2-x+2+x^2-2^2\)\(=\left(x^2+x^2\right)+\left(2-2^2\right)-x\)
\(=2x^2-\left(2-4\right)-x=2x^2-\left(-2\right)-x\)
\(=2x^2+2-x=2x^2+2.1-x=2\left(x^2+1\right)-x\)
Bài 1:
a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1\(\ge\)0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967\(\ge\)0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2\(\le\)0+21=21
Dấu = khi x+4=0 <=>x=-4
b)đề sai à
ài 1:
a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1$\ge$≥0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967$\ge$≥0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2$\le$≤0+21=21
Dấu = khi x+4=0 <=>x=-4
b)đề sai à
thực sự mk rất mún giúp bn nhưng mk chưa hok tới!! xin lỗi
45646565557657767876876876565657676768876334455454655454
mình giải đc phần a) thôi:
x+y=xy
<=> x+y-xy=0
<=> x(1-y)-(1-y)+1=0
<=> (1-y)(x-1)=-1
do đó: 1-y=1;x-1=-1
hoặc 1-y=-1; x-1=1
+) 1-y=1 => y=0
x-1=-1=> x=0
+) 1-y=-1 => y=2
x-1=1 => x=2
=> cặp x,y cần tìm là (0;0) và (2;2)
\(\left(4-x\right)^2+\left(x-4\right)\left(x-5\right)-4\left(x-5\right)^2+1\)
= \(16-4x+x^2+x^2-5x-4x+20-4\left(x^2-5x+25\right)+1\)
= \(37-13x+2x^2-4x^2+20x+100\)
= \(137+7x-2x^2\)
\(=\left(x-4\right)^2+\left(x-4\right)\left(x-5\right)-\left(2\left(x-5\right)\right)^2+1\)
\(=\left(x-4\right)\left(2x-9\right)-\left(\left(2x-10\right)^2-1\right)\)
\(=\left(x-4\right)\left(2x-9\right)-\left(2x-11\right)\left(2x-9\right)\)
\(=\left(2x-9\right)\left(x-4-2x+11\right)=\left(2x-9\right)\left(7-x\right)\)
\(M=x^2+y^2-xy-2x-2y+2\)
\(\Leftrightarrow M=\left(\frac{1}{2}x^2-xy+\frac{1}{2}y^2\right)+\left(\frac{1}{2}x^2-2x+2\right)+\left(\frac{1}{2}y^2-2y+2\right)-2\)
\(\Leftrightarrow M=\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(x-2\right)^2+\frac{1}{2}\left(y-2\right)^2-2\ge-2\)\(\forall\)\(x\)
"=" khi x=y=2
Vậy Min M là -2 khi x=y=2
\(M=x^2+y^2-xy-2x-2y+2\)
\(4M=4x^2+4y^2-4xy-8x-8y+8\)
\(4M=\left(4x^2-4xy+y^2\right)+3y^2-8x-8y+8\)
\(4M=\left[\left(2x-y\right)^2-2\left(2x-y\right)\times2+4\right]+3y^2-12y+4\)
\(4M=\left(2x-y-2\right)^2+3\left(y^2-4y+4\right)-8\)
\(4M=\left(2x-y-2\right)^2+3\left(y-2\right)^2-8\)
\(\Rightarrow4M\ge-8\)
\(\Leftrightarrow M\ge-2\)
Dấu "=" xảy ra khi :
1) x2- 3x - 6x +18
= (x2- 3x )-(6x -18 )
= x(x-3)- 6(x-3)
= (x-6)(x-3)
1) \(25x^4-10x^2y+y^2\)
\(\Leftrightarrow\left(5x^2\right)^2+2\cdot\left(5x^2\right)\cdot y+y^2\)
\(\Leftrightarrow\left(5x^2+y\right)^2\)
2) \(x^4+2x^3-4x-4\)
\(\Leftrightarrow\left(x^4-4\right)+\left(2x^3-4x\right)\Leftrightarrow\left(x^2-2\right)\left(x^2+2\right)+2x\left(x^2-2\right)\)
\(\Leftrightarrow\left(x^2-2\right)\left(x^2+2+2x\right)\)
3) \(x^4+x^2+1\)
\(\Leftrightarrow x^4+x^2-x+x+1\)
\(\Leftrightarrow\left(x^4-x\right)+\left(x^2+x+1\right)\)
\(\Leftrightarrow x\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2-x+1\right)\)
4) \(x^3-5x^2-14x\)\(\Leftrightarrow x^3-7x^2+2x^2-14x\)
\(\Leftrightarrow x^2\left(x-7\right)+2x\left(x-7\right)\)\(\Leftrightarrow x\left(x+2\right)\left(x-7\right)\)
5) \(x^2yz+5xyz-14yz\)\(\Leftrightarrow yz\left(x^2+5x-14\right)\)
\(\Leftrightarrow yz\left(x^2+7x-2x-14\right)\)
\(\Leftrightarrow yz\left[x\left(x+7\right)-2\left(x+7\right)\right]\)
\(\Leftrightarrow yz\left(x+7\right)\left(x-2\right)\)
Đặt \(A=2^{17}-2^{16}-2^{15}-...-2^2-2-1\) ta có :
\(A=2^{17}-\left(2^{16}+2^{15}+...+2+1\right)\)
Đặt \(B=2^{16}+2^{15}+...+2+1\) ta có :
\(2B=2^{17}+2^{16}+...+2^2+2\)
\(2B-B=\left(2^{17}+2^{16}+...+2^2+2\right)-\left(2^{16}+2^{15}+...+2+1\right)\)
\(B=2^{17}-1\)
\(\Rightarrow\)\(A=2^{17}-B=2^{17}-\left(2^{17}-1\right)=2^{17}-2^{17}+1=1\)
Vậy \(A=1\)
Chúc bạn iu họk tốt :3
bài này không biết làm á