K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2017

Ta có : 2A = \(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2011}}\)

2A - A = \(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2011}}\)- \(\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2012}}\right)\)

A = 2 - \(\dfrac{1}{2^{2012}}\)

31 tháng 5 2017

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{1.3}\)

\(...\)

\(\dfrac{1}{100^2}>\dfrac{1}{99.100}\)

\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\\ \Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ \Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< 1-\dfrac{1}{100}=\dfrac{99}{100}\\ \dfrac{99}{100}< \dfrac{1}{4}\\ \Rightarrowđpcm\)

28 tháng 3 2017

Ta có:

\(100-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)=\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{99}{100}\)

\(\Rightarrow100-1-\dfrac{1}{2}-...-\dfrac{1}{100}=\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{99}{100}\)

\(\Rightarrow100=1+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{2}{3}+...+\dfrac{1}{100}+\dfrac{99}{100}\)

\(\Rightarrow100=1+1+1+...+1\) (\(100\) số \(1\))

\(\Rightarrow100=100\)

Vậy \(100-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)=\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{99}{100}\) (Đpcm)

13 tháng 5 2017

\(A=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)....\left(\dfrac{1}{100^2}-1\right)\\ =-\dfrac{3}{4}.-\dfrac{8}{9}...-\dfrac{9999}{10000}\\ =-\left(\dfrac{3}{4}.\dfrac{8}{9}...\dfrac{9999}{10000}\right)\\ =-\left(\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}....\dfrac{99.101}{100.100}\right)=-\left(\dfrac{1.2....99}{2.3....100}.\dfrac{3.4....101}{2.3....100}\right)\\ =-\left(\dfrac{1}{100}.\dfrac{101}{2}\right)\\ =-\dfrac{101}{200}< \dfrac{-100}{200}=-\dfrac{1}{2}\\ \Rightarrow A< \dfrac{-1}{2}\)

27 tháng 4 2017

b)

\(B=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2016}}\\ 2B=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2015}}\\ 2B-B=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2015}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2016}}\right)\\ B=1-\dfrac{1}{2^{2016}}< 1\)

Vậy B < 1 (đpcm)

27 tháng 4 2017

a)

Để \(A=\dfrac{3n+2}{n-1}\) nhận giá trị nguyên thì \(3n+2⋮n-1\)

\(3n+2=3n-3+5=3\left(n-1\right)+5\\ 3n+2⋮n-1\Rightarrow3\left(n-1\right)+5⋮n-1\Rightarrow5⋮n-1\Rightarrow n-1\inƯ\left(5\right)\)

Ư(5) = {-5;-1;1;5}

n-1 -5 -1 1 5
n -4 0 2 6

28 tháng 4 2017

a) Để \(A=\dfrac{5}{\left(x-3\right)^2+1}\) đạt giá trị lớn nhất

\(\Leftrightarrow\left(x-3\right)^2+1\) phải nhỏ nhất

\(\left(x-3\right)^2\ge0\Leftrightarrow\left(x-3\right)^2+1\ge1\)

\(\Rightarrow A_{max}=\dfrac{5}{\left(x-3\right)^2+1}=\dfrac{5}{1}=5\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Rightarrow x=3\)

Vậy \(A_{max}=5\) tại \(x=3\)

b) Để \(B=\dfrac{4}{\left|x-2\right|+2}\) đạt giá trị lớn nhất

\(\Leftrightarrow\left|x-2\right|+2\) phải nhỏ nhất

\(\left|x-2\right|\ge0\Leftrightarrow\left|x-2\right|+2\ge2\)

\(\Rightarrow B_{max}=\dfrac{4}{\left|x-2\right|+2}=\dfrac{4}{2}=2\)

Dấu "=" xảy ra \(\Leftrightarrow\left|x-2\right|=0\Leftrightarrow x-2=0\Rightarrow x=2\)

Vậy \(B_{max}=2\) tại \(x=2\)

27 tháng 4 2017

\(\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}+...+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}\\ =\dfrac{200-2-\left(1+\dfrac{2}{3}+\dfrac{2}{4}+...+\dfrac{2}{100}\right)}{\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{3}\right)+\left(1-\dfrac{1}{4}\right)+...+\left(1-\dfrac{99}{100}\right)}\\ =\dfrac{198-\left(\dfrac{2}{2}+\dfrac{2}{3}+\dfrac{2}{4}...+\dfrac{2}{100}\right)}{\left(1+1+1+...+1\right)-\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}\\ =\dfrac{2\cdot99-2\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}{99-\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}\\ =\dfrac{2\cdot\left[99-\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\right]}{99-\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}=2\left(đpcm\right)\)

7 tháng 5 2018

1/ \(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{8^2}\)

\(B< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{7.8}\)

\(B< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}\)

\(B< \dfrac{1}{1}-\dfrac{1}{8}< 1\)

\(B< 1\)

2/ \(B=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{20}\right)\)

\(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{19}{20}\)

\(B=\dfrac{1\times2\times3\times...\times19}{2\times3\times4\times...\times20}\)

\(B=\dfrac{1}{20}\)

3/ \(A=\dfrac{7}{4}\cdot\left(\dfrac{3333}{1212}+\dfrac{3333}{2020}+\dfrac{3333}{3030}+\dfrac{3333}{4242}\right)\)

\(A=\dfrac{7}{4}\cdot\left(\dfrac{33}{12}+\dfrac{33}{20}+\dfrac{33}{30}+\dfrac{33}{42}\right)\)

\(A=\dfrac{7}{4}\cdot\left(\dfrac{33}{3.4}+\dfrac{33}{4.5}+\dfrac{33}{5.6}+\dfrac{33}{6.7}\right)\)

\(A=\dfrac{7}{4}.33.\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\right)\)

\(A=\dfrac{231}{4}.\left(\dfrac{1}{3}-\dfrac{1}{7}\right)\)

\(A=\dfrac{231}{4}\cdot\dfrac{4}{21}\)

\(A=11\)

4/ A phải là \(\dfrac{2011+2012}{2012+2013}\)

Ta có : \(B=\dfrac{2011}{2012}+\dfrac{2012}{2013}>\dfrac{2011}{2013}+\dfrac{2012}{2013}=\dfrac{2011+2012}{2013}>\dfrac{2011+2012}{2012+2013}=A\)

\(\Rightarrow B>A\)

11 tháng 4 2017

Bài 1)

Ta có:

A = \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+\dfrac{1}{8^2}\)

A < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)

A < \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)

A < \(1-\dfrac{1}{8}\) = \(\dfrac{7}{8}\) < 1

Vậy A < 1

12 tháng 4 2017

Bài 2)

Ta thấy:

\(\dfrac{2011}{2012+2013}< \dfrac{2011}{2012};\dfrac{2012}{2012+2013}< \dfrac{2012}{2013}\)

\(\Rightarrow\) \(\dfrac{2011}{2012+2013}+\dfrac{2012}{2012+2013}< \dfrac{2011}{2012}+\dfrac{2012}{2013}\)

\(\Rightarrow\) \(\dfrac{2011+2012}{2012+2013}< \dfrac{2011}{2012}+\dfrac{2012}{2013}\)

\(\Rightarrow\) A < B

Bài 3)

Ta có:

B = \(\left(1-\dfrac{1}{1}\right)\left(1-\dfrac{1}{3}\right).\left(1-\dfrac{1}{4}\right)......\left(1-\dfrac{1}{20}\right)\)

= \(0.\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)......\left(1-\dfrac{1}{20}\right)\)

= 0

Bài 3)

Ta có:

A = \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+.....+\dfrac{1}{2^{2012}}\)

\(\Rightarrow\) 2A = \(2\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+.....+\dfrac{1}{2^{2012}}\right)\)

\(\Rightarrow\) 2A = \(2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{2011}}\)

\(\Rightarrow\) 2A - A = \(\left(2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{2011}}\right)\)-\(\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+.....+\dfrac{1}{2^{2012}}\right)\)

\(\Rightarrow\) A = 2 - \(\dfrac{1}{2^{2012}}\) = \(\dfrac{2^{2013}-1}{2^{2012}}\)

Bài 5)

\(\pi\) + 5 \(⋮\) \(\pi\) - 2

\(\Leftrightarrow\) \(\pi\) - 2 + 7 \(⋮\) \(\pi\) - 2

\(\Leftrightarrow\) 7 \(⋮\) \(\pi\) - 2 (vì \(\pi\) - 2 \(⋮\) \(\pi\) - 2)

\(\Leftrightarrow\) \(\pi\) - 2 \(\in\) Ư(7)

\(\Leftrightarrow\) \(\pi\) - 2 \(\in\) \(\left\{\pm1;\pm7\right\}\)

\(\Leftrightarrow\) \(\pi\) \(\in\) \(\left\{1;3;-5;9\right\}\)

2 tháng 7 2017

\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2012}}\)

\(\Rightarrow2A=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2011}}\)

\(\Leftrightarrow2A-A=\left(2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2011}}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2012}}\right)\)

\(\Leftrightarrow A=2-\dfrac{1}{2^{2012}}\)

2 tháng 7 2017

Ta có :

\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+....................+\dfrac{1}{2^{2012}}\)

\(\Leftrightarrow2A=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+................+\dfrac{1}{2^{2011}}\)

\(\Leftrightarrow2A-A=\left(2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+..........+\dfrac{1}{2^{2011}}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+............+\dfrac{1}{2^{2012}}\right)\)\(\Leftrightarrow A=2-\dfrac{1}{2^{2012}}\)