K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2017

\(A=\left(\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}-\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\right):\dfrac{\sqrt{xy}}{x-y}\)

\(A=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2-\left(\sqrt{x}-\sqrt{y}\right)^2}{x-y}:\dfrac{\sqrt{xy}}{x-y}\)

\(A=\dfrac{x+2\sqrt{xy}+y-x+2\sqrt{xy}-y}{\sqrt{xy}}=\dfrac{4\sqrt{xy}}{\sqrt{xy}}=4\)

3 tháng 6 2017

\(A=\left(\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}-\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\right):\dfrac{\sqrt{xy}}{x-y}\)

\(=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2-\left(\sqrt{x}-\sqrt{y}\right)^2}{x-y}\cdot\dfrac{x-y}{\sqrt{xy}}\)

\(=\dfrac{\left(\sqrt{x}+\sqrt{y}+\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}-\sqrt{x}+\sqrt{y}\right)}{x-y}\cdot\dfrac{x-y}{\sqrt{xy}}\)

\(=\dfrac{2\sqrt{x}\cdot2\sqrt{y}}{x-y}\cdot\dfrac{x-y}{\sqrt{xy}}\)

\(=\dfrac{4\sqrt{xy}}{x-y}\cdot\dfrac{x-y}{\sqrt{xy}}\)

\(=4\)

6 tháng 12 2023

a) \(B=\left(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}+\dfrac{x\sqrt{x}-y\sqrt{y}}{y-x}\right):\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\left(x,y\ge0;x\ne y\right)\)

\(B=\left[\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}-\dfrac{\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3}{x-y}\right]:\dfrac{x-2\sqrt{xy}+y+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)

\(B=\left[\left(\sqrt{x}+\sqrt{y}\right)-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right]:\dfrac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)

\(B=\left[\left(\sqrt{x}+\sqrt{y}\right)-\dfrac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\right]:\dfrac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)

\(B=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x+\sqrt{xy}+y}\)

\(B=\dfrac{x+2\sqrt{xy}+y-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x+\sqrt{xy}+y}\)

\(B=\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x+\sqrt{xy}+y}\)

\(B=\dfrac{\sqrt{xy}}{x+\sqrt{xy}+y}\)

b) Xét tử: 

\(\sqrt{xy}\ge0\forall x,y\) (xác định) (1) 

Xét mẫu: 

\(x+\sqrt{xy}+y\)

\(=\left(\sqrt{x}\right)^2+2\cdot\dfrac{1}{2}\sqrt{y}\cdot\sqrt{x}+\left(\dfrac{1}{2}\sqrt{y}\right)^2+\dfrac{3}{4}y\)

\(=\left(\sqrt{x}+\dfrac{1}{2}\sqrt{y}\right)^2+\dfrac{3}{4}y\)

Mà: \(\left(\sqrt{x}+\dfrac{1}{2}\sqrt{y}\right)^2\ge0\forall x,y\) (xác định), còn: \(\dfrac{3}{4}y\ge0\) vì theo đkxđ thì \(y\ge0\) (2) 

Từ (1) và (2) ⇒ B luôn không âm với mọi x,y (\(B\ge0\)) (đpcm) 

AH
Akai Haruma
Giáo viên
2 tháng 3 2021

Lời giải:

a) ĐK: $x\geq 0; y\geq 0; x\neq y$

\(A=\left[\frac{(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})}{\sqrt{x}-\sqrt{y}}-\frac{(\sqrt{x}-\sqrt{y})(x+\sqrt{xy}+y)}{(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})}\right]:\frac{x-\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)

\(=\left(\sqrt{x}+\sqrt{y}-\frac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\right).\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)

\(=\frac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}.\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}=\frac{\sqrt{xy}}{x-\sqrt{xy}+y}\)

b) \(1-A=\frac{(\sqrt{x}-\sqrt{y})^2}{x-\sqrt{xy}+y}>0\) với mọi $x\neq y; x,y\geq 0$

$\Rightarrow A< 1$

 

12 tháng 10 2022

a: \(=\dfrac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{x-1}=\dfrac{-2\left(\sqrt{x}-1\right)}{x-1}=\dfrac{-2}{\sqrt{x}+1}\)

b: \(=\dfrac{\sqrt{x}-x\sqrt{y}-\sqrt{y}+y\sqrt{x}+\sqrt{x}+x\sqrt{y}+\sqrt{y}+y\sqrt{x}}{1-xy}:\left(\dfrac{x+y+2xy+1-xy}{1-xy}\right)\)

\(=\dfrac{2\sqrt{x}+2y\sqrt{x}}{1-xy}\cdot\dfrac{1-xy}{x+y+xy+1}\)

\(=\dfrac{2\sqrt{x}\left(y+1\right)}{\left(y+1\right)\left(x+1\right)}=\dfrac{2\sqrt{x}}{x+1}\)

c: \(=\dfrac{3x+3\sqrt{x}-9+x+2\sqrt{x}-3-x+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{3x+5\sqrt{x}-8}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\dfrac{3\sqrt{x}+8}{\sqrt{x}+2}\)

a: \(N=\dfrac{x-\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}:\left(\dfrac{\left(x-y\right)\left(\sqrt{x}+\sqrt{y}\right)-x\sqrt{x}+y\sqrt{y}}{x-y}\right)\)

\(=\dfrac{x-\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}:\dfrac{x\sqrt{x}+x\sqrt{y}-y\sqrt{x}-y\sqrt{y}-x\sqrt{x}+y\sqrt{y}}{x-y}\)

\(=\dfrac{x-\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{x-y}{x\sqrt{y}-y\sqrt{x}}\)

\(=\dfrac{x-\sqrt{xy}+y}{1}\cdot\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}\)

\(=\dfrac{x-\sqrt{xy}+y}{\sqrt{xy}}\)

b: \(N-1=\dfrac{x-2\sqrt{xy}+y}{\sqrt{xy}}=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{xy}}>0\)

=>N>1

28 tháng 6 2017

a) tự làm.

b) \(P=\left(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}-\dfrac{x\sqrt{x}-y\sqrt{y}}{x-y}\right)\div\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)

\(=\left(\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\cdot\dfrac{\sqrt{x}+\sqrt{y}}{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}\)

\(=\left(\sqrt{x}+\sqrt{y}-\dfrac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\right)\cdot\dfrac{\sqrt{x}+\sqrt{y}}{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)+\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)-\left(x+\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}\)

\(=\dfrac{x+\sqrt{xy}+\sqrt{xy}+y-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}\)

\(=\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}\)

\(=\sqrt{xy}\cdot\dfrac{1}{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}\)

\(=\dfrac{\sqrt{xy}}{x-2\sqrt{xy}+y+\sqrt{xy}}\)

\(=\dfrac{\sqrt{xy}}{x-\sqrt{xy}+y}\)