Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1\frac{1}{2}.1\frac{1}{3}.1\frac{1}{4}.....1\frac{1}{2015}\)
\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}........\frac{2016}{2015}\)
\(=\frac{3.4.5.....2016}{2.3.4....2015}=\frac{2016}{2}=1008\)
\(A=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{2016}{2015}\)
\(A=\frac{2016}{2}=1008\)
Xong nhé bạn!
Bài 1 :
Đề câu a) có thêm \(n\inℤ\)
a) \(A=n^2+n+3=n\left(n+1\right)+2+1\)
Ta thấy : \(n\left(n+1\right)⋮2,2⋮2\)
\(\Rightarrow n\left(n+1\right)+2⋮2\)
\(\Rightarrow n\left(n+1\right)+2+1⋮̸2\)
hay \(A⋮̸2\) ( đpcm )
b) Ta có : \(\left|2x-4\right|\ge0\forall x\)
\(\Rightarrow-\left|2x-4\right|\le0\forall x\)
\(\Rightarrow18-\left|2x-4\right|\le18\forall x\)
hay \(A\le18\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left|2x-4\right|=0\Leftrightarrow x=2\)
Vậy max \(A=18\) khi \(x=2\)
b1 :
a,n^2 + n + 3
= n(n + 1) + 3
n(n+1) là tích của 2 stn liên tiếp => n(n+1) chia hết cho 2
=> n(n+1) + 3 không chia hết cho 2
b, A = 18 - |2x - 4|
|2x - 4| > 0 => - |2x - 4| < 0
=> 18 - |2x - 4| < 18
=> A < 18
xét A = 18 khi |2x - 4| = 0
=> 2x - 4 = 0
=> x = 2
c, A = |5 - x| + 2015
|5 - x| > 0
=> |5 - x| + 2015 > 2015
=> A > 2015
xét A = 2015 khi |5 - x| = 0
=> 5 - x = 0 => x = 5
Tính từng phép tính trong ngoặc ta được :
\(A= \frac{3}{4}. \frac{8}{9} . ....\frac{899}{900}\)
\(A=\frac{1.3}{2.2} .\frac{2.4}{3.3}.... \frac{29.31}{30.30}\)
Gộp các thừa số với sau được
\(A= \frac{(1.2.3.4....29)(3.4.5.6...31)}{(2.3.4...30)(2.3.4..30)}\)
\(A= \frac{31}{30.2} = \frac{31}{60}\)
a)\(M=\frac{2019\times2020-2}{2018+2018\times2020}=\frac{2019\times2020-2}{2018+2018\times2020+2020-2020}=\frac{2019\times2020-2}{\left(2018+1\right)\times2020+2018-2020}=\frac{2019\times2020-2}{2019\times2020-2}=1\\ N=\frac{-2019\times20202020}{20192019\times2020}=\frac{-2019\times10001\times2020}{2019\times10001\times2020}=-1\)
b)\(5\left|x-1\right|=3M-2N=5\\ \left|x-1\right|=1\Rightarrow\hept{\begin{cases}x-1=1\Rightarrow x=2\\x-1=-1\Rightarrow x=0\end{cases}}\)
ko phải đâu
phải d9o1` . cam đoan 1000%