K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2017

2n+3 + 2n+2 - 2n+1 + 2n = 2n.23 + 2n.22 - 2n.2 + 2n

= 2n.(23 + 22 - 2 + 1)

= 2n.11

23 tháng 7 2017

sửa lại đề nè:

So sánh: 291 và 535

Ta có: 291 = (213)7 = 81927

535 = (55)7 = 31257

Vì 81927>31257

=> 291>535

23 tháng 7 2017

Tui lỡ viết lộn

1 tháng 2 2017

hé hé bạn mik ớ ngân giới tính rất linh hoạt

P/s : đầu óc bạn thì ko đc linh hoạt bởi tên ngân còn hỏi là trai hay gái

1 tháng 2 2017

nghé z

8 tháng 9 2017

2. GTLN

có A= x - |x|

Xét x >= 0 thì A= x - x = 0 (1)

Xét x < 0 thì A=x - (-x) = 2x < 0 (2)

Từ (1) và (2) => A =< 0

Vậy GTLN của A bằng 0 khi x >= 0

Bài1:

\(C=x^2+3\text{|}y-2\text{|}-1\)

Với mọi x;ythì \(x^2>=0;3\text{|}y-2\text{|}>=0\)

=>\(x^2+3\text{|}y-2\text{|}>=0\)

Hay C>=0 với mọi x;y

Để C=0 thì \(x^2=0\)\(\text{|}y-2\text{|}=0\)

=>\(x=0vày-2=0\)

=>\(x=0và.y=2\)

Vậy....

5 tháng 3 2017

Ta có:

(\(\dfrac{a}{b}\))3=\(\dfrac{1}{8000}\)

\(\Rightarrow\)(\(\dfrac{a}{b}\))3=(\(\dfrac{1}{20}\))3

\(\Rightarrow\)\(\dfrac{a}{b}\)=\(\dfrac{1}{20}\)

Theo tính chất tỉ lệ thức và tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{1}\)=\(\dfrac{b}{20}\)=\(\dfrac{a+b}{1+20}\)=\(\dfrac{42}{21}\)=2

\(\Rightarrow\)b=2.20=40

Vậy b=40

Học tốt!vui

5 tháng 3 2017

Ahihi em chịu ....!limdim

21 tháng 9 2017

Cho mk xin cái đề bài

21 tháng 9 2017

undefined

19 tháng 4 2017

lớp mấy nhỉ

19 tháng 4 2017

đăng lớp nào thì thi lớp đó có thế mà cũng hỏi

24 tháng 10 2017

\(\left(x-3\right)^2+\left|y^2-9\right|=0\)

\(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\forall x\\\left|y^2-9\right|\ge0\forall y\end{matrix}\right.\)

để bt = 0 \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left|y^2-9\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y^2-9=0\Rightarrow y^2=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\\left[{}\begin{matrix}y=3\\y=-3\end{matrix}\right.\end{matrix}\right.\)

Vậy.....

24 tháng 10 2017

\(\left(x-3\right)^2+\left|y^2-9\right|=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-3\right)^2=0\\\left|y^2-9\right|=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\y^2-9=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\y^2=9\left[{}\begin{matrix}y=3\\y=-3\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=3\\y=3hoặcy=-3\end{matrix}\right.\)