Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\sqrt{4x^4}+6x^2=2x^2+6x^2=8x^2\)
\(b,\sqrt{25a^4}-2a^2=5a^2-2a^2=3a^2\)
\(c,\sqrt{36a^4}+8a=6a^2+8a\)
\(d,\sqrt{\left(x-3\right)^4}-x^2+3x-1=\left(x-3\right)^2-x^2+3x-1=x^2-6x+9-x^2+3x-1=-3x+8\)
Câu 3:
bạn cứ áp dụng cái \(a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right)\left(a+c\right)\left(b+c\right)\)
Câu 4:
từ giả thiết :\(a+b+c+\sqrt{abc}=4\Leftrightarrow\sqrt{abc}=4-a-b-c\Leftrightarrow abc=\left(4-a-b-c\right)^2\)
ta có: \(a\left(4-b\right)\left(4-c\right)=a\left(16-4c-4b+bc\right)=16a-4ac-4ab+abc\)
\(=16a-4ab-4ac+\left[4-\left(a+b+c\right)\right]^2=16a-4ab-4ac+16-8\left(a+b+c\right)+\left(a+b+c\right)^2\)
\(=a^2+b^2+c^2-2ab-2ac+2bc+8a-8b-8c+16\)
\(=\left(a-b-c\right)^2+8\left(a-b-c\right)+16=\left(a-b-c+4\right)^2\)
\(\Rightarrow\sqrt{a\left(4-b\right)\left(4-c\right)}=a-b-c+4\)(vì \(a-b-c+4=a-b-c+a+b+c+\sqrt{abc}=2a+\sqrt{abc}>0\))
các căn thức còn lại tương tự ...
mk nghĩ bạn chép sai đề hình như đề bài phải là \(A=\sqrt[3]{\frac{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}}{2}}+\sqrt[3]{\frac{x^3-3x-\left(x^2-1\right)\sqrt{x^2-4}}{2}}\)
ta xét \(A^3=\left(\sqrt[3]{\frac{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}}{2}}+\sqrt[3]{\frac{x^3-3x-\left(x^2-1\right)\sqrt{x^2-4}}{2}}\right)^3\)
<=> \(A^3=x^3-3x+3A\cdot\sqrt[3]{\frac{4}{4}}\)
<=> \(A^3=x^3-3x+3A\)
<=> \(A^3-3A-x^3+3x=0\)
<=>\(\left(A^3-x^3\right)-3A+3x=0\)
<=> \(\left(A-x\right)\left(A^2+Ax+x^2\right)-3\left(A-x\right)=0\)
<=> \(\left(A-x\right)\left(A^2+Ax+x^2-3\right)=0\)
<=> \(\orbr{\begin{cases}A=x\\A^2+Ax+x^2-3=0\end{cases}}\)(vô lí )
vậy \(A=x\)
\(a,\)\(A=\left(\frac{x-2\sqrt{3x}+3}{x-3}\right)\left(\sqrt{4x}+\sqrt{12}\right).\)
\(=\left(\frac{\left(\sqrt{x}-\sqrt{3}\right)^2}{\left(\sqrt{x}-\sqrt{3}\right)\left(\sqrt{x}+\sqrt{3}\right)}\right)\)\(.\left(2\sqrt{x}+2\sqrt{3}\right)\)
\(=\frac{\left(\sqrt{x}-\sqrt{3}\right)^22\left(\sqrt{x}+\sqrt{3}\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=2\left(\sqrt{x}-\sqrt{3}\right)\)
\(b,x=4-2\sqrt{3}\)\(=3-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)
\(\Leftrightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)
\(\Rightarrow A=2\left(\sqrt{x}-\sqrt{3}\right)=2\left(\sqrt{3}-1-\sqrt{3}\right)=2.\left(-1\right)=-2\)
Bài 1
a) √81a - √36a - √144a = 9√a - 6√a - 12√a = -9√a
b) √75 - √48 - √300 = 5√3 - 4√3 - 10√3 = -9√3
Bài 2
a) √2x-3 = 7
⇒ 2x-3 = 49 ⇔ 2x = 52 ⇔ x =26
c) √16x - √9x = 2
⇔ 4√x - 3√x = 2 ⇔ √x = 2 ⇔ x = 4
Bài 3
a) √(2-√5)2 = l 2-√5 l = √5-2
b) (a - 3)2 + (a - 9)
= a2 - 6a + 9 + a - 9 = a2 - 5a
c) A=\(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}:\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
=\(\left(\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)
=\(\left(\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\right)\)
=\(\left(\dfrac{-3\sqrt{x}-3}{x-9}\right).\left(\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\right)\)
=\(\left(\dfrac{-3\left(\sqrt{x}+1\right)}{x-9}\right).\left(\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\right)\)
=\(\dfrac{-3\sqrt{x}+9}{x-9}\)
a) \(x+3+\sqrt{x^2-6x+9}\left(x\le3\right)\)
\(=x+3+\sqrt{\left(x-3\right)^2}\)
\(=x+3+\left|x-3\right|\)
\(=x+3-\left(x-3\right)\)
\(=x+3-x+3\)
\(=6\)
b) \(\sqrt{x^2+4x+4}-\sqrt{x^2}\left(-2\le x\le0\right)\)
\(=\sqrt{\left(x+2\right)^2}-\sqrt{x^2}\)
\(=\left|x+2\right|-\left|x\right|\)
\(=x+2-\left(-x\right)\)
\(=x+2+x\)
\(=2x+2=2\left(x+1\right)\)
c) \(\frac{\sqrt{x^2-2x+1}}{x-1}\left(x>1\right)\)
\(=\frac{\sqrt{\left(x-1\right)^2}}{x-1}\)
\(=\frac{\left|x-1\right|}{x-1}\)
\(=\frac{x-1}{x-1}=1\)
d) \(\left|x-2\right|+\frac{\sqrt{x^2-4x+4}}{x-2}\)
\(=\left|x-2\right|+\frac{\sqrt{\left(x-2\right)^2}}{x-2}\)
\(=\left|x-2\right|+\frac{\left|x-2\right|}{x-2}\)
\(=\left|x-2\right|+\frac{-\left(x-2\right)}{x-2}\)
\(=\left|x-2\right|-1\)
\(=-\left(x-2\right)-1\)
\(=-x+2-1\)
\(=-x+1=-\left(x-1\right)\)
a)\(\sqrt{36a^4}+8a=\sqrt{\left(6a^2\right)^2}+8a=6a^2+8a.\)(Vì \(6a^2\ge0\))
b) \(\sqrt{\left(x-3\right)^4}-x^2+3x-1=\sqrt{\left[\left(x-3\right)^2\right]^2}-x^2+3x-1\)
\(=\left(x-3\right)^2-x^2+3x-1\)( Vì \(\left(x-3\right)^2\ge0\))
\(=x^2-6x+9-x^2+3x-1\)
\(=-3x+8\)