Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
I2x+3I = 5
=> 2x+3 = 5 hoặc 2x+3 = -5
=> 2x = 5 - 3 hoặc 2x = -5 - 3
=> 2x = 2 hoặc 2x = -8
=> x = 2 hoặc x = -4
2:
B = 1/2.2/3.3/4.4/5.....27/28
= 1.2.3.4.5.6...27/2.3.4.5.6...28
= 1/28
3:
2A = 2(1+1/2+1/2^2+1/2^3+1/2^4+...+1/2^2015) = 2+1+1/2+1/2^2+1/2^3+...+1/2^2014
=> 2A-A = ( 2+1+1/2+1/2^2+1/2^3+...+1/2^2014)-(1+1/2+1/2^2+1/2^3+...+1/2^2015)
=> A = 2-1/2^2015
\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)\)
\(B=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}...\frac{19}{20}\)
\(B=\frac{1.2.3...19}{2.3.4...20}=\frac{1.\left(2.3.4...19\right)}{\left(2.3.4...19\right).20}=\frac{1}{20}\)
\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{2}{3}\right).\left(1-\frac{3}{4}\right).....\left(1-\frac{19}{20}\right)\)
\(B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{19}{20}\)
Ta thấy hai phân số liên tiếp nhau, mẫu phân số thứ nhất giống với tử phân số thứ hai nên ta sẽ rút gọn chúng.
\(\Rightarrow B=\frac{1}{20}\)
\(B=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)\)
\(B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{19}{20}\)
\(B=\frac{1.2.3...19}{2.3.4...20}\)
\(B=\frac{1}{20}\)
\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)\)
\(B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{19}{20}\)
\(B=\frac{1.2.3...19}{2.3.4...20}\)
\(B=\frac{1.\left(2.3.4...19\right)}{\left(2.3.4...19\right).20}\)
\(B=\frac{1}{20}.\)
B=( 1-1/2) (1-1/3).(1-1/4)....(1-1/20)
B=\(\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times....\times\frac{19}{20}\)
\(B=\frac{1\cdot2\cdot3\cdot...\cdot19}{2\cdot3\cdot4\cdot...\cdot20}\)
\(B=\frac{1}{20}\)
\(B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{19}{20}=\frac{1}{20}\)
\(B=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)\)
\(B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{19}{20}\)
\(B=\frac{1}{20}\)
\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)\)
\(B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{19}{20}\)
\(B=\frac{1.2.3...19}{2.3.4...20}\)
\(B=\frac{1}{20}\)