K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\)

\(=a+\sqrt{a}-2\sqrt{a}-1+1\)

\(=a-\sqrt{a}\)

7 tháng 10 2021

A=\(\dfrac{\sqrt{a}\left(\sqrt{a^3}+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)

A=\(\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\left(2\sqrt{a}+1\right)+1\)

A=\(a+\sqrt{a}-2\sqrt{a}-2+1=a-\sqrt{a}-1\)

a: Ta có: \(P=\left(\dfrac{1}{a+\sqrt{a}}+\dfrac{1}{\sqrt{a}+1}\right):\dfrac{\sqrt{a}-1}{a+2\sqrt{a}+1}\)

\(=\dfrac{a+1}{\sqrt{a}\left(\sqrt{a}+1\right)}\cdot\dfrac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}-1}\)

\(=\dfrac{\left(a+1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}\)

a: Ta có: \(P=\left(\dfrac{1}{a+\sqrt{a}}+\dfrac{1}{\sqrt{a}+1}\right):\dfrac{\sqrt{a}-1}{a+2\sqrt{a}+1}\)

\(=\dfrac{a+1}{\sqrt{a}\left(\sqrt{a}+1\right)}\cdot\dfrac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}-1}\)

\(=\dfrac{\left(a+1\right)\cdot\left(\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}\)

Câu 3:

\(C=\dfrac{3\sqrt{x}-x+x+9}{9-x}:\dfrac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-3\left(\sqrt{x}+3\right)}{x-9}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}\)

\(=\dfrac{-3\sqrt{x}}{2\sqrt{x}+4}\)

Để C<-1 thì C+1<0

=>-3 căn x+2 căn x+4<0

=>-căn x<-4

=>x>16

a: \(A=\left(\dfrac{a-1}{2\sqrt{a}}\right)^2\cdot\dfrac{a-2\sqrt{a}+1-a-2\sqrt{a}-1}{a-1}\)

\(=\dfrac{\left(a-1\right)^2}{4a}\cdot\dfrac{-4\sqrt{a}}{a-1}\)

\(=\dfrac{-\left(a-1\right)}{\sqrt{a}}\)

b: \(=1+\left(\dfrac{\left(2\sqrt{a}-1\right)}{1-\sqrt{a}}+\dfrac{2a\sqrt{a}-\sqrt{a}+a}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\right)\cdot\dfrac{a-\sqrt{a}}{2\sqrt{a}-1}\)

Δ\(=1+\left(\dfrac{\left(-2\sqrt{a}+1\right)}{\sqrt{a}-1}+\dfrac{2a\sqrt{a}-\sqrt{a}+a}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\right)\cdot\dfrac{a-\sqrt{a}}{2\sqrt{a}-1}\)

\(=1+\left(\dfrac{-2a\sqrt{a}-\sqrt{a}+1+2a\sqrt{a}-\sqrt{a}+a}{a+\sqrt{a}+1}\cdot\dfrac{\sqrt{a}}{2\sqrt{a}-1}\right)\)

\(=1+\dfrac{\left(\sqrt{a}-1\right)^2\cdot\sqrt{a}}{\left(2\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\)

\(=\dfrac{2a\sqrt{a}+2a+2\sqrt{a}-a-\sqrt{a}-1+a\sqrt{a}-2a+\sqrt{a}}{\left(2\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\)

\(=\dfrac{3a\sqrt{a}-a+2\sqrt{a}-1}{\left(2\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\)

17 tháng 7 2021

\(D=\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(D=\frac{x-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{x+2\sqrt{x}-\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(D=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}}\)

\(E=\left(1+\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1+\frac{x-\sqrt{x}}{1-\sqrt{x}}\right)=\left(1+\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right)\left(1-\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right)\)

\(E=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x\)

18 tháng 7 2021

ĐK : a >= 0 , a khác 1

\(C=\left[\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}-\frac{\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right]\div\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(=\frac{a+\sqrt{a}-\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\times\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}+1}=\frac{a}{\sqrt{a}+1}\)

7 tháng 8 2018

\(A=\dfrac{\sqrt{a+1}}{\sqrt{a+1}.\sqrt{a-1}-\sqrt{a}.\sqrt{a+1}}+\dfrac{1}{\sqrt{a-1}+\sqrt{a}}+\dfrac{a\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\\ =\dfrac{\sqrt{a+1}}{\sqrt{a+1}\left(\sqrt{a-1}-\sqrt{a}\right)}+\dfrac{1}{\sqrt{a-1}+\sqrt{a}}+a\\ =\dfrac{1}{\sqrt{a-1}-\sqrt{a}}+\dfrac{1}{\sqrt{a-1}+\sqrt{a}}+a\\ =\dfrac{\sqrt{a-1}+\sqrt{a}}{a-1-a}+\dfrac{\sqrt{a-1}-\sqrt{a}}{a-1-a}+a\\ =\dfrac{2\sqrt{a-1}}{-1}+a\\ =-2\sqrt{a-1}+a.\)