Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)
\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)
b) \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)
\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)
\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)
\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)
c) ĐK: \(a\ge0;a\ne1\)
\(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)
\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)
\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)
\(=1-a+a=1\)
\(A=\frac{\sqrt{2}-\sqrt{1}}{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}+...+\frac{\sqrt{n}-\sqrt{n-1}}{\left(\sqrt{n}-\sqrt{n-1}\right)\left(\sqrt{n}+\sqrt{n-1}\right)}\)\(A=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{n}-\sqrt{n-1}\)
\(A=\sqrt{n}-\sqrt{1}\)
\(B=\frac{\sqrt{1}+\sqrt{2}}{\left(\sqrt{1}-\sqrt{2}\right)\left(\sqrt{1}+\sqrt{2}\right)}+\frac{\sqrt{2}+\sqrt{3}}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{\sqrt{24}+\sqrt{25}}{\left(\sqrt{24}-\sqrt{25}\right)\left(\sqrt{24}+\sqrt{25}\right)}\)
\(B=-\left(\sqrt{1}+\sqrt{2}\right)-\left(\sqrt{2}+\sqrt{3}\right)-...-\sqrt{24}+\sqrt{25}\)
\(B=-1-2\sqrt{2}-2\sqrt{3}-...-\sqrt{24}-5\)
\(B=-1-2\sqrt{2}-2\sqrt{3}-...-\sqrt{24}-5\)
\(B=-6-2\sqrt{2}-2\sqrt{3}-...-2\sqrt{24}\)
ta có \(\frac{1}{\sqrt{1}+\sqrt{2}}=\frac{\sqrt{1}-\sqrt{2}}{\left(\sqrt{1}+\sqrt{2}\right)\left(\sqrt{1}-\sqrt{2}\right)}=\frac{\sqrt{1}-\sqrt{2}}{1-2}=\sqrt{1}-\sqrt{2}\)
mấy cái kia cũng thế a
\(=>A=\left(\sqrt{2}-1\right)+\left(\sqrt{3}-2\right)+...+\left(\sqrt{n}-\sqrt{n-1}\right)\)=>A= căn n -1
\(A=\frac{\sqrt{3}-1}{1+\sqrt{1+\frac{\sqrt{3}}{2}}}+\frac{\sqrt{3}+1}{1-\sqrt{1-\frac{\sqrt{3}}{2}}}=\frac{\sqrt{3}-1}{1+\sqrt{\frac{2+\sqrt{3}}{2}}}+\frac{\sqrt{3}+1}{1-\sqrt{\frac{2-\sqrt{3}}{2}}}\)
\(=\frac{\sqrt{3}-1}{1+\frac{\sqrt{4+2\sqrt{3}}}{2}}+\frac{\sqrt{3}+1}{1-\frac{\sqrt{4-2\sqrt{3}}}{2}}=\frac{\sqrt{3}-1}{1+\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{2}}+\frac{\sqrt{3}+1}{1-\frac{\sqrt{\left(\sqrt{3}-1\right)^2}}{2}}\)
\(=\frac{\sqrt{3}-1}{\frac{3+\sqrt{3}}{2}}+\frac{\sqrt{3}+1}{\frac{3-\sqrt{3}}{2}}=\frac{2\left(\sqrt{3}-1\right)}{\sqrt{3}\left(\sqrt{3}+1\right)}+\frac{2\left(\sqrt{3}+1\right)}{\sqrt{3}\left(\sqrt{3}-1\right)}\)
\(=\frac{2}{\sqrt{3}}\left(\frac{4-2\sqrt{3}+4+2\sqrt{3}}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\right)=\frac{2}{\sqrt{3}}.\frac{8}{2}=\frac{8}{\sqrt{3}}=\frac{8\sqrt{3}}{3}\)
\(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+.........+\frac{1}{\sqrt{2017}+\sqrt{2018}}\)
\(=\frac{2-1}{\sqrt{1}+\sqrt{2}}+\frac{3-2}{\sqrt{2}+\sqrt{3}}+........+\frac{2018-2017}{\sqrt{2017}+\sqrt{2018}}\)
\(=\frac{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}{\sqrt{1}+\sqrt{2}}+\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}}+......+\)
\(\frac{\left(\sqrt{2018}-\sqrt{2017}\right)\left(\sqrt{2018}+\sqrt{2017}\right)}{\sqrt{2017}+\sqrt{2018}}\)
\(=\left(\sqrt{2}-\sqrt{1}\right)+\left(\sqrt{3}-\sqrt{2}\right)+........+\left(\sqrt{2018}-\sqrt{2017}\right)\)
\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+......+\sqrt{2018}-\sqrt{2017}\)
\(=-\sqrt{1}+\sqrt{2018}=\sqrt{2018}-\sqrt{1}\)
a=1
toán lớp 9 mà lớp 6 còn làm được nè!