K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2016

Ta có :A = 1 + 5 + 52 + 53 + .... + 549 + 550

=> 5A = 5 + 52 + 53 + .... + 550 + 551

=> 5A - A = 551 - 1 

=> 4A = 551 - 1

=> A = \(\frac{5^{51}-1}{4}\)

2 tháng 10 2016

A=\(5^{51}\)\(-5^0\)

k mk nha

mk k lại cho!

31 tháng 10 2015

5A=5+52+53+...+550+551

5A-A=551-1

A=551-1:4

tick mk nha cái kia sai rôi

\(\frac{5^{51}-1}{4}\)

26 tháng 7 2016

Ta có:

A = 1+ 5 + 52 + 53 + ......... + 549 + 550

=> 5A = 5 + 52 + 53 + 54 +.......+ 549 + 550

Do đó: 5A - A = 551 - 1

Vậy A =  \(\frac{5^{51}-1}{4}\)

27 tháng 11 2015

=(551-1 ):4

 tick nha

 

30 tháng 12 2016

\(A=1+5+5^2+5^3+....+5^{49}+5^{50}\)

\(5A=5+5^2+5^3+5^4+.....+5^{50}+5^{51}\)

\(5A-A=5+5^2+5^3+5^4+......+5^{50}+5^{51}-\left(1+5+5^2+5^3+......+5^{49}+5^{50}\right)\)

\(4A=5+5^2+5^3+5^4+......+5^{50}+5^{51}-1-5-5^2-5^3-5^4-.....-5^{49}-5^{50}\)

\(4A=5^{51}-1\)

\(A=\frac{5^{51}-1}{4}\)

15 tháng 7 2016

A = 1 + 5 + 52 + 53 + ... + 549 + 550

5A = 5 + 52 + 53 + 54 + ... + 550 + 551

5A - A = (5 + 5+ 53 + 54 + ... + 550 + 551) - (1 + 5 + 5+ 53 + ... + 549 + 550)

4A = 551 - 1

\(A=\frac{5^{51}-1}{4}\)

15 tháng 7 2016

A = 1 + 5 + 52 + 53 + ... + 549 + 550

5A = 5 + 52 + 53 + 54 + ... + 550 + 551

5A - A = (5 + 5+ 53 + 54 + ... + 550 + 551) - (1 + 5 + 5+ 53 + ... + 549 + 550)

4A = 551 - 1

$A=\frac{5^{51}-1}{4}$

19 tháng 7 2017

a, ta có A.5 = 5 ( 1+5 +52 +...........+549 +550)

5A = 5 +52 +53 +............... + 550 +551

5A-A = (5 +52 +53 +............+ 551) - (1+5+52 +......+550)

4A = 551 -1

A =\(\dfrac{5^{51}-1}{4}\)

vậy A =

19 tháng 7 2017

b, B= \(\dfrac{4^5.9^4-2.6^9}{2^{10}.3+6^8.20}\)

= \(\dfrac{\left(2^2\right)^5.\left(3^3\right)^4-2.6^9}{2^{10}.3+6^8.20}\)

=\(\dfrac{2^{10}.3^{12}-2.6^9}{2^{10}.3+6^8.20}\)

= \(\dfrac{3^{11}-6}{10}\)

30 tháng 6 2017

\(A=1+5+5^2+5^3+...+5^{49}+5^{50}\)
\(5A=5^1+5^2+5^3+5^4+...+5^{51}\)
\(4A=5A-A=5^{51}-1\)
\(\Rightarrow A=\frac{5^{51}-1}{4}\)
b/
\(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{98}+\left(\frac{1}{2}\right)^{99}\)
\(\frac{1}{2}B=\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+...+\left(\frac{1}{2}\right)^{100}\)
\(\frac{1}{2}B=B-\frac{1}{2}B=\frac{1}{2}-\left(\frac{1}{2}\right)^{100}\)
\(B=\frac{1}{2}B\cdot2=\left[\frac{1}{2}-\left(\frac{1}{2}\right)^{100}\right].2\)
\(B=1-\frac{1}{2^{99}}\)
 

20 tháng 12 2015

5A = 5+5^2+5^3+....+5^51

5A - A = (5-5)+(5^2-5^2)+....+(5^50-5^50) + 5^51-1

4A = 5^51 - 1

\(\Rightarrow A=\frac{5^{51}-1}{4}\)

20 tháng 12 2015

Câu hỏi tương tự có đó Hermione Granger