Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk ko biết làm
xin lỗi bn nhae
xin lỗi vì đã ko giúp được bn
chcus bn học gioi!
nhae@@@
\(MTC:\left(x-3\right)^2\left(x^2+3x+9\right)\)
\(\frac{x}{x^3-27}=\frac{x}{\left(x-3\right)\left(x^2+3x+9\right)}=\frac{x\left(x-3\right)}{\left(x-3\right)^2\left(x^2+3x+9\right)}\)
\(\frac{2x}{x^2-6x+9}=\frac{2x}{\left(x-3\right)^2}=\frac{2x\left(x^2+3x+9\right)}{\left(x-3\right)^2\left(x^2+3x+9\right)}\)
\(\frac{1}{x^2+3x+9}=\frac{\left(x-3\right)^2}{\left(x-3\right)^2\left(x^2+3x+9\right)}\)
\(MTC:2\left(x-1\right)\left(x+1\right)\)
\(\frac{x-1}{2x+2}=\frac{x-1}{2\left(x+1\right)}=\frac{\left(x-1\right)^2}{2\left(x-1\right)\left(x+1\right)}\)
\(\frac{x+1}{2x-2}=\frac{x+1}{2\left(x-1\right)}=\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}\)
\(\frac{1}{1-x^2}=-\frac{1}{\left(x-1\right)\left(x+1\right)}=-\frac{2}{2\left(x-1\right)\left(x+1\right)}\)
\(MTC:2\left(x+1\right)\left(x^2-x+1\right)\)
\(\frac{1}{x^3+1}=\frac{1}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{2}{2\left(x+1\right)\left(x^2-x+1\right)}\)
\(\frac{3}{2x+2}=\frac{3}{2\left(x+1\right)}=\frac{3\left(x^2-x+1\right)}{2\left(x+1\right)\left(x^2-x+1\right)}\)
\(\frac{2}{x^2-x+1}=\frac{4\left(x+1\right)}{2\left(x+1\right)\left(x^2-x+1\right)}\)
Bài 2: \(a,\frac{7x-1}{2x^2+6x}=\frac{7x-1}{2x\left(x+3\right)}=\frac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}\)
\(\frac{5-3x}{x^2-9}=\frac{5-3x}{\left(x-3\right)\left(x+3\right)}=\frac{\left(5-3x\right)2x}{2x\left(x-3\right)\left(x+3\right)}\)
\(b,\frac{x+1}{x-x^2}=\frac{x+1}{x\left(1-x\right)}=-\frac{x+1}{x\left(x+1\right)}=-\frac{2\left(x-1\right)\left(x+1\right)}{2x\left(x-1\right)^2}\)
\(\frac{x+2}{2-4x+2x^2}=\frac{x+2}{2\left(x-1\right)^2}=\frac{2x\left(x+2\right)}{2x\left(x-1\right)^2}\)
\(c,\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{6}{x-1}=\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(d,\frac{7}{5x}=\frac{7.2\left(2y-x\right)\left(2y+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{4}{x-2y}=-\frac{4}{2y-x}=-\frac{4.2.5x\left(2x+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{2.5x.\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{1}{x}-\frac{1}{x+1}=\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{x^2+x}\)
b, \(\frac{1}{xy-x^2}-\frac{1}{y^2-xy}=\frac{y^2-xy-xy+x^2}{\left(xy-x^2\right)\left(y^2-xy\right)}=\frac{x^2+y^2}{xy^3-xyxy-xyxy+x^3y}\)Tu rut gon tiep
c, tt
d, cx r
a) \(\frac{1}{x}-\frac{1}{x+1}=\frac{x+1}{x\left(x+1\right)}-\frac{x}{x\left(x+1\right)}\)
\(=\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{x\left(x+1\right)}\)
b) \(\frac{1}{xy-x^2}-\frac{1}{y^2-xy}=\frac{1}{x\left(y-x\right)}-\frac{1}{y\left(y-x\right)}\)
\(=\frac{y}{xy\left(y-x\right)}-\frac{x}{xy\left(y-x\right)}=\frac{y-x}{xy\left(y-x\right)}=\frac{1}{xy}\)
c) \(\frac{9x-3}{4x-1}-\frac{3x}{1-4x}=\frac{9x-3}{4x-1}+\frac{3x}{4x-1}\)
\(=\frac{9x-3+3x}{4x-1}=\frac{6x-3}{4x-1}\)
bạn không ghi yêu cầu nên mình làm như này
1) \(\frac{1}{x-3}\) và \(\frac{5}{x^2-3x}\)
Ta có: \(1.\left(x^2-3x\right)=x^2-3x\)
\(\left(x-3\right).5=5x-15\)
\(\Rightarrow x^2-3x\ne5x-15\)
\(\Rightarrow1.\left(x^2-3x\right)\ne\left(x-3\right).5\)
Vậy: \(\frac{1}{x-3}\ne\frac{5}{x^2-3x}\)
2) \(\frac{x}{x^2+x}\) và \(\frac{2}{x-1}\) và \(\frac{x+2}{x^2-1}\)
Ta có: \(x.\left(x-1\right)=x^2-x\)
\(2.\left(x^2+x\right)=2x^2+2x\)
\(\Rightarrow x^2-x\ne2x^2+2x\)
\(\Rightarrow x.\left(x-1\right)\ne2.\left(x^2+x\right)\)
\(\Rightarrow\frac{1-3x}{2x}\ne\frac{2}{x-1}\) (1)
Ta lại có: \(2.\left(x^2-1\right)=2x^2-2\)
\(\left(x-1\right)\left(x+2\right)=x^2+2x-x-2\)
\(=x^2-x-2\)
\(\Rightarrow2x^2-2\ne x^2-x-2\)
\(\Rightarrow2.\left(x^2-1\right)\ne\left(x-1\right)\left(x+2\right)\)
\(\Rightarrow\frac{2}{x-1}\ne\frac{x+2}{x^2-1}\) (2)
Từ (1) và (2) => \(\frac{x}{x^2+x}\ne\frac{2}{x-1}\ne\frac{x+2}{x^2-1}\)
3) \(\frac{1-3x}{2x}\) và \(\frac{3x-2}{2x-1}\) và \(\frac{3x-2}{4x^2-2x}\)
Ta có:\(\left(1-3x\right)\left(2x-1\right)=2x-1-6x^2+3x\)
\(=5x-1-6x^2\)
\(2x.\left(3x-2\right)=6x^2-4x\)
\(\Rightarrow5x-1-6x^2\ne6x^2-4x\)
\(\Rightarrow\left(1-3x\right)\left(2x-1\right)\ne2x\left(3x-2\right)\)
\(\Rightarrow\frac{1-3x}{2x}\ne\frac{3x-2}{2x-1}\)(1)
Ta lại có: \(\left(3x-2\right)\left(4x^2-2x\right)=12x^2-6x^2-8x^2+4x\)
\(=12x^3-14x^2+4x\)
\(\left(2x-1\right)\left(3x-2\right)=6x^2-4x-3x+2\)
\(=6x^2-7x+2\)
\(\Rightarrow12x^3-14x^2+4x\ne6x^2-7x+2\)
\(\Rightarrow\left(3x-2\right)\left(4x^2-2x\right)\ne\left(2x-1\right)\left(3x-2\right)\)
\(\Rightarrow\frac{3x-2}{2x-1}\ne\frac{3x-2}{4x^2-2x}\) (2)
Từ (1) và (2) => \(\frac{1-3x}{2x}\ne\frac{3x-2}{2x-1}\ne\frac{3x-2}{4x^2-2x}\)