K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2021

\(PT\left(1\right)=\dfrac{3\left(x+1\right)\left(4x-4\right)}{6x\left(x+3\right)\left(x+1\right)}\\ PT\left(2\right)=\dfrac{2\left(x-3\right)\left(x+3\right)}{6x\left(x+1\right)\left(x+3\right)}\)

27 tháng 12 2015

a,\(\frac{2x^2+4x}{x+2}\)=\(\frac{2x\left(x+2\right)}{x+2}\)\(=2x\)

b, \(\frac{3x}{2x+4}\)=\(\frac{3x^2-6x}{2\left(x+2\right)\left(x-2\right)}\)

\(\frac{x+3}{x^2+4}\)=\(\frac{2x+6}{2\left(x-2\right)\left(x+2\right)}\)

tick mình nhé!!

27 tháng 11 2020

a, \(\frac{3x}{2x+4};\frac{x+3}{x^2-4}\)

Ta có : \(2x+4=2\left(x+2\right)\)

\(x^2-4=\left(x-2\right)\left(x+2\right)\)

MTC : \(2\left(x-2\right)\left(x+2\right)\)

\(\frac{3x}{2x+4}=\frac{3x}{2\left(x+2\right)}=\frac{3x\left(x-2\right)}{2\left(x-2\right)\left(x+2\right)}=\frac{3x^2-6x}{2\left(x-2\right)\left(x+2\right)}\)

\(\frac{x+3}{x^2-4}=\frac{x+3}{\left(x-2\right)\left(x+2\right)}=\frac{2x+6}{\left(x-2\right)\left(x+2\right)}\)

27 tháng 11 2020

c, \(\frac{2x}{x^2-8x+16};\frac{x}{3x^2-12x}\)

Ta có : \(x^2-8x+16=\left(x-4\right)^2\)

\(3x^2-12x=3x\left(x-4\right)\)

MTC : \(3x\left(x-4\right)^2\)

\(\frac{2x}{x^2-8x+16}=\frac{2x}{\left(x-4\right)^2}=\frac{6x^2}{3x\left(x-4\right)^2}\)

\(\frac{x}{3x^2-12x}=\frac{x}{3x\left(x-4\right)}=\frac{x^2+4x}{3x\left(x-4\right)\left(x+4\right)}\)

15 tháng 3 2022

[1111222x5]

31 tháng 3 2016

a) x vô nghiệm

b)<=>(x2-3x+3)(x2-2x+3)-2x2=(x-3)(x-1)(x2-x+3)

=>(x-3)(x-1)(x2-x+3)=0

TH1:x-3=0

=>X=3

TH2:x-1=0

=>x=1

TH3:x2-x+3=0

<=>(-1)2-4(1.3)=-11

vì -11<0

=>x=1 hoặc 3

bạn tự tiếp làm đi dễ mà

9 tháng 7 2015

bình tĩnh tách từng câu ra nhé bạn ới. mik sắp xỉu

7 tháng 11 2017

Bài 1 . Chia :( x3 + 5x2 - 4x - 20) cho ( x2 + 3x - 10) ta được x+ 2

Chia :( x3 + 5x2 - 4x - 20) cho ( x2 + 7x + 10) ta được x - 2

Do đó , ta có :

\(\dfrac{1}{x^2+3x-10}=\dfrac{x+2}{\left(x^2+3x-10\right)\left(x+2\right)}=\dfrac{x+2}{x^3+5x^2-4x-20}\)

Và : \(\dfrac{x}{x^2+7x+10}=\dfrac{x\left(x-2\right)}{\left(x^2+7x+10\right)\left(x-2\right)}=\dfrac{x^2-2x}{x^3+5x^2-4x-20}\)

7 tháng 11 2017

Bài 2 . a) Ta có :

\(\dfrac{x-1}{x^3+1}\)( giữ nguyên)

\(\dfrac{2x}{x^2-x+1}=\dfrac{2x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{2x^2+2x}{x^3+1}\)

\(\dfrac{2}{x+1}=\dfrac{2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{2x^2-2x+2}{x^3+1}\)

b) Ta có MTC = x2( y - z)2

Ta có :

\(\dfrac{x+y}{x\left(y-z\right)^2}=\dfrac{x^2+xy}{x^2\left(y-z\right)^2}\)

\(\dfrac{y}{x^2\left(y-z\right)^2}\)( giữ nguyên )

\(\dfrac{z}{x^2}=\dfrac{z\left(y-z\right)^2}{x^2\left(y-z\right)^2}\)

4 tháng 12 2018

a) \(\left(3x-5\right)\left(2x+3\right)-\left(2x-3\right)\left(3x+7\right)-2x\left(x-4\right)\)

\(=\left(6x^2-x-15\right)-\left(6x^2+5x-21\right)-\left(2x^2-8x\right)\)

\(=6x^2-x-15-6x^2-5x+21-2x^2+8x\)

\(=-2x^2+2x+6\)

\(=-2\left(x^2-x-3\right)\)

b) \(\left(x^2+2\right)^2-\left(x+2\right)\left(x-2\right)\left(x^2+4\right)\)

\(=\left(x^2+2\right)^2-\left(x^2-4\right)\left(x^2+4\right)\)

\(=\left(x^2+2\right)^2-\left(x^4-16\right)\)

\(=\left(x^4+4x^2+4\right)-\left(x^4-16\right)\)

\(=x^4+4x^2+4-x^4+16\)

\(=4x^2+20\)

\(=4\left(x^2+5\right)\)

c) \(\left(2x-y\right)^2-2\left(x+3y\right)^2-\left(1+3x\right)\left(3x-1\right)\)

\(=\left(4x^2-4xy+y^2\right)-2\left(x^2+6xy+9y^2\right)-\left(9x^2-1\right)\)

\(=4x^2-4xy+y^2-2x^2-16xy-18y^2-9x^2+1\)

\(=-7x^2-20xy-17y^2+1\)

d) \(\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2-1\right)\)

\(=\left(x^6-3x^4+3x^2-1\right)-\left(x^6-1\right)\)

\(=x^6-3x^4+3x^2-1-x^6+1\)

\(=-3x^4+3x^2\)

\(=-3x^2\left(x^2-1\right)\)

\(=-3x^2\left(x-1\right)\left(x+1\right)\)

e) \(\left(2x-1\right)^2-2\left(4x^2-1\right)+\left(2x+1\right)^2\)

\(=\left(2x-1\right)^2-2\left(2x-1\right)\left(2x+1\right)+\left(2x+1\right)^2\)

\(=\left[\left(2x-1\right)-\left(2x+1\right)\right]^2\)

\(=\left(2x-1-2x-1\right)^2\)

\(=\left(-2\right)^2=4\)

g) \(\left(x-y+z\right)^2+\left(y-z\right)^2-2\left(x-y+z\right)\left(z-y\right)\)

\(=\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2\)

\(=\left(x-y+z+y+z\right)^2\)

\(=\left(x+2z\right)^2\)

h) \(\left(2x+3\right)^2+\left(2x+5\right)^2-\left(4x+6\right)\left(2x+5\right)\)

\(=\left(2x+3\right)^2-2\left(2x+3\right)\left(2x+5\right)+\left(2x+5\right)^2\)

\(=\left[\left(2x+3\right)-\left(2x+5\right)\right]^2\)

\(=\left(2x+3-2x-5\right)^2\)

\(=\left(-2\right)^2=4\)

i) \(5x^2-\dfrac{10x^3+15x^2-5x}{-5x}-3\left(x+1\right)\)

\(=5x^2-\dfrac{-5x\left(-2x^2-3x+1\right)}{-5x}-3\left(x+1\right)\)

\(=5x^2-\left(-2x^2-3x+1\right)-3\left(x+1\right)\)

\(=5x^2+2x^2+3x-1-3x-3\)

\(=7x^2-4\)