Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M=100
Xét tử N
92-(1/9)-(2/10)-(3/11)- ... -(90/98)-(91/99)-(92/100)
=(1+1+1+...+1)-(1/9)-(2/10)-(3/11)- ... -(90/98)-(91/99)-(92/100)
=1-(1/9)+1-(2/10)+1-(3/11)+......+1-(90/98)+1-(91/99)+1-(92/100)
=(8/9)+(8/10)+(8/11)+ ...+ (8/98)+(8/99)+(8/100)
=8.[(1/9)+(1/10)+(1/11)+...+(1/98)+(1/99)+(1/100)]
=40[(1/45)+(1/50)+(1/55)+...+(1/495)+(1/500)]
=>N=40
=>M/N=5/2
\(1.a)\dfrac{2^3+3.26-4^3}{2^3.3^2}\)
\(=\dfrac{2^3.3.2.13-\left(2^2\right)^3}{2^3.3^2}\)
\(=\dfrac{2^4.3.13-2^6}{2^3.3^2}\)
\(=\dfrac{2^3\left(2.3.13-2^3\right)}{2^3.3^2}\)
\(=\dfrac{78-8}{9}\)
\(=\dfrac{70}{9}\)
\(b)\dfrac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
\(=\dfrac{\left(2^2\right)^6.\left(3^2\right)^5+\left(2.3\right)^9.2^4.3.5}{\left(2^3\right)^4.3^{12}-\left(2.3\right)^{11}}\)
\(=\dfrac{2^{12}.3^{10}+2^{13}.3^{10}.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(=\dfrac{2^{12}.3^{10}\left(1+2.5\right)}{2^{11}.3^{11}\left(2.3\right)}\)
\(=\dfrac{2.11}{3.6}\)
\(=\dfrac{11}{9}\)
\(2.3^{x-1}-3^{x+1}=90\)
\(\Leftrightarrow3^x:3-3^x.3=90\)
\(\Leftrightarrow3^x\left(\dfrac{1}{3}-3\right)=90\)
\(\Leftrightarrow3^x.\dfrac{-8}{3}=90\)
\(\Leftrightarrow3^x=\dfrac{-135}{4}\)
\(\Leftrightarrow\) \(x\) không có giá trị nào để thỏa mãn đề bài.
Vậy \(x\in\varnothing\)
nữ thám tử nổi tiếng
Đề bài câu 2 sai thì phải, nếu đề bài đc sửa lại là \(3^{x-1}+3^{x+1}=90\) thì \(x=3\) có lẽ là đúng
1, \(x\left(x+\dfrac{2}{3}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+\dfrac{2}{3}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-2}{3}\end{matrix}\right.\)
2, a, \(\left|x+\dfrac{4}{6}\right|\ge0\)
Để \(\left|x+\dfrac{4}{6}\right|\) đạt GTNN thì \(\left|x+\dfrac{4}{6}\right|=0\)
\(\Leftrightarrow x+\dfrac{4}{6}=0\Rightarrow x=\dfrac{-2}{3}\)
Vậy, ...
b, \(\left|x-\dfrac{1}{3}\right|\ge0\)
Để \(\left|x-\dfrac{1}{3}\right|\) đạt GTLN thì \(\left|x-\dfrac{1}{3}\right|=0\)
\(\Leftrightarrow x-\dfrac{1}{3}=0\Rightarrow x=\dfrac{1}{3}\)
Vậy, ...
1)
a)
\(x\cdot\left(x+\dfrac{2}{3}\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x+\dfrac{2}{3}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{2}{3}\end{matrix}\right.\)
2)
a)
\(\left|x+\dfrac{4}{6}\right|\ge0\)
Dấu \("="\) xảy ra khi \(x+\dfrac{4}{6}=0\Leftrightarrow x=\dfrac{-4}{6}\Leftrightarrow x=\dfrac{-2}{3}\)
Vậy \(Min_{\left|x+\dfrac{4}{6}\right|}=0\text{ khi }x=\dfrac{-2}{3}\)
b)
\(\left|x-\dfrac{1}{3}\right|\ge0\)
Dấu \("="\) xảy ra khi \(x-\dfrac{1}{3}=0\Leftrightarrow x=\dfrac{1}{3}\)
Vậy \(Min_{\left|x-\dfrac{1}{3}\right|}=0\text{ khi }x=\dfrac{1}{3}\)