\(\frac{x+16}{\sqrt{x}+3}\) chứng minh P>\(\sqrt{P}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2021

điều kiện \(x\ge0;P\ge0\)

Để chứng minh \(p>\sqrt{P}\)luôn đúng ta cần chứng minh P>1 luôn đúng.

Giả sử P>1 \(\Leftrightarrow\)\(\frac{x+16}{\sqrt{x}+3}>1\)\(\Leftrightarrow\)\(x+16>\sqrt{x}+3\)\(\Leftrightarrow\)\(x-\sqrt{x}+13>0\)

\(\Leftrightarrow\)\(x+\sqrt{x}+\frac{1}{4}+12,75>0\)\(\Leftrightarrow\)\(\left(\sqrt{x}+\frac{1}{2}\right)^2+12,75>0\)luôn luôn đúng

như vậy P luôn luôn >1 là đúng\(\Leftrightarrow\)\(p>\sqrt{P}\)luôn đúng (đpcm)

1. Tính giá trị biểu thức: \(A=\sqrt{a^2+4ab^2+4b}-\sqrt{4a^2-12ab^2+9b^4}\) với \(a=\sqrt{2}\) ; \(b=1\) 2. Đặt \(M=\sqrt{57+40\sqrt{2}}\) ; \(N=\sqrt{57-40\sqrt{2}}\). Tính giá trị của các biểu thức sau: a) M-N b) \(M^3-N^3\) 3. Chứng minh: \(\left(\frac{x\sqrt{x}+3\sqrt{3}}{x-\sqrt{3x}+3}-2\sqrt{x}\right)\left(\frac{\sqrt{x}+\sqrt{3}}{3-x}\right)=1\) (với \(x\ge0\) và \(x\ne3\)) 4. Chứng minh:...
Đọc tiếp

1. Tính giá trị biểu thức: \(A=\sqrt{a^2+4ab^2+4b}-\sqrt{4a^2-12ab^2+9b^4}\) với \(a=\sqrt{2}\) ; \(b=1\)

2. Đặt \(M=\sqrt{57+40\sqrt{2}}\) ; \(N=\sqrt{57-40\sqrt{2}}\). Tính giá trị của các biểu thức sau:

a) M-N

b) \(M^3-N^3\)

3. Chứng minh: \(\left(\frac{x\sqrt{x}+3\sqrt{3}}{x-\sqrt{3x}+3}-2\sqrt{x}\right)\left(\frac{\sqrt{x}+\sqrt{3}}{3-x}\right)=1\) (với \(x\ge0\)\(x\ne3\))

4. Chứng minh: \(\frac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}.\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}=a-b\) (a > 0 ; b > 0)

5. Chứng minh: \(\sqrt{9+4\sqrt{2}}=2\sqrt{2}+1\) ; \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=5+3\sqrt{2}\) ; \(3-2\sqrt{2}=\left(1-\sqrt{2}\right)^2\)

6. Chứng minh: \(\left(\frac{1}{2\sqrt{2}-\sqrt{7}}-\left(3\sqrt{2}+\sqrt{17}\right)\right)^2=\left(\frac{1}{2\sqrt{2}-\sqrt{17}}-\left(2\sqrt{2}-\sqrt{17}\right)\right)^2\)

7. Chứng minh đẳng thức: \(\left(\frac{3\sqrt{2}-\sqrt{6}}{\sqrt{27}-3}-\frac{\sqrt{150}}{3}\right).\frac{1}{\sqrt{6}}=-\frac{4}{3}\)

8.Chứng minh: \(\frac{2002}{\sqrt{2003}}+\frac{2003}{\sqrt{2002}}>\sqrt{2002}+\sqrt{2003}\)

9. Chứng minh rằng: \(\sqrt{2000}-2\sqrt{2001}+\sqrt{2002}< 0\)

10. \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\) ; \(\frac{7}{5}< \frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}< \frac{29}{30}\)

0
12 tháng 9 2020

a)\(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}=\frac{3}{2}\sqrt{6}+2\frac{\sqrt{6}}{3}-4\frac{\sqrt{6}}{2}\)

\(=\sqrt{6}\left(\frac{3}{2}+\frac{2}{3}-\frac{4}{2}\right)=\sqrt{6}.\frac{1}{6}\)

b) \(\left(x\sqrt{\frac{6}{x}}+\sqrt{\frac{2x}{3}}+\sqrt{6x}\right):\sqrt{6x}=\left(x.\frac{\sqrt{6x}}{x}+\frac{\sqrt{6x}}{3}+\sqrt{6x}\right):\sqrt{6x}\)

\(=1+\frac{1}{3}+1=2\frac{1}{3}\)

24 tháng 9 2019

what sub

13 tháng 6 2019

Có bị sai đề không vậy bạn ? Mình nghĩ nó là \(\sqrt{x}+3\) với \(\sqrt{x}-3\)chứ không phải là \(\sqrt{x+3}\) với \(\sqrt{x-3}\)?

7 tháng 12 2017

\(\left(1\right)\Rightarrow\hept{\begin{cases}\sqrt{x}-\sqrt{y}=\frac{1}{\sqrt{z}}-\frac{1}{\sqrt{y}}=\frac{\sqrt{y}-\sqrt{z}}{\sqrt{xy}}\\\sqrt{y}-\sqrt{z}=\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{z}}=\frac{\sqrt{z}-\sqrt{x}}{\sqrt{xz}}\\\sqrt{z}-\sqrt{x}=\frac{1}{\sqrt{y}}-\frac{1}{\sqrt{x}}=\frac{\sqrt{x}-\sqrt{y}}{\sqrt{xy}}\end{cases}\left(2\right)}\)

\(\left(2\right)\Rightarrow\left(\sqrt{x}-\sqrt{y}\right).\left(\sqrt{y}-\sqrt{z}\right).\left(\sqrt{z}-\sqrt{x}\right)=\frac{\left(\sqrt{y}-\sqrt{z}\right).\left(\sqrt{z}-\sqrt{x}\right).\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{zyzxxy}}\left(3\right)\)\(Từ\left(3\right)\)Ta sẽ chứng minh được rằng \(\orbr{\begin{cases}x=y=z\\x.y.z=1\end{cases}}\)