Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{\sqrt{2}}.A=\frac{\sqrt{\left(x-1\right)+2\sqrt{x-1}+1}+\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}}{\sqrt{\left(2x-1\right)+2\sqrt{2x-1}+1}-\sqrt{\left(2x-1\right)-2\sqrt{2x-1}+1}}\)
\(=\frac{\sqrt{\left[\left(\sqrt{x-1}+1\right)\right]^2}+\sqrt{\left[\left(\sqrt{x-1}-1\right)^2\right]}}{\sqrt{\left[\sqrt{2x-1}+1\right]^2}-\sqrt{\left[\left(\sqrt{2x-1}\right)-1\right]^2}}\)
\(=\frac{\left|\sqrt{x-1}+1\right|+\left|\sqrt{x-1}-1\right|}{\left|\sqrt{2x-1}+1\right|-\left|\sqrt{2x-1}-1\right|}\)
DO X>2 NÊN TOÀN BỘ BIỂU THỨC TRONG TRỊ TUYỆT ĐỐI ĐỀU DƯƠNG
\(\frac{1}{\sqrt{2}}.A=\frac{2\sqrt{x-1}}{2}=\sqrt{x-1}\)
=>\(A=\frac{\sqrt{x-1}}{\sqrt{2}}\)
ĐK: x>0, x \(\ne1;4\)
Rút gọn :
\(A=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)^2}+\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)^2}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}+1}+\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{2\left(x+1\right)}{x-1}\)
\(A>1\Leftrightarrow\frac{2\left(x+1\right)}{x-1}>1\Leftrightarrow\frac{2\left(x+1\right)}{x-1}-1>0\)
\(\Leftrightarrow\frac{2x+2-x+1}{x-1}>0\)
\(\Leftrightarrow\frac{x+3}{x-1}>0\)(theo đk x>0=>x+3>0)
\(\Rightarrow x-1>0\Rightarrow x>1\)
Kết hợp điều kiện x>0, x khác 1;4
=> x>1, x khác 4 thì P>1
(14,78-a)/(2,87+a)=4/1
14,78+2,87=17,65
Tổng số phần bằng nhau là 4+1=5
Mỗi phần có giá trị bằng 17,65/5=3,53
=>2,87+a=3,53
=>a=0,66.
a,\(\sqrt{x-4+4\sqrt{x-4}+4}\) +\(\sqrt{x-4-4\sqrt{x-4}+4}\)
=\(\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|\) (vi x>=8)
=\(\sqrt{x-4}+2+\sqrt{x-4}-2=2\sqrt{x-4}\)
b, \(\sqrt{x-1+2\sqrt{x\left(x-1\right)}+x}+\sqrt{x-1-2\sqrt{x\left(x-1\right)}+x}\)
=\(\sqrt{x-1}+\sqrt{x}+\left|\sqrt{x-1}-\sqrt{x}\right|\)
=\(\sqrt{x}+\sqrt{x-1}+\sqrt{x}-\sqrt{x-1}\) =\(2\sqrt{x}\)
c,d sai dau bai hay sao y
a) \(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-\left(x-2\sqrt{xy}+y\right)\)
\(=x-\sqrt{xy}+y-x+2\sqrt{xy}-y=\sqrt{xy}\)
b) \(\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\sqrt{\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}=\frac{\left|\sqrt{x}-1\right|}{\sqrt{x}+1}\)
c) \(4x-\sqrt{8}+\frac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}=4x-\sqrt{8}+\frac{\sqrt{x^2\left(x+2\right)}}{x+2}=4x-\sqrt{8}+x=5x-\sqrt{8}\)
\(A=\frac{\sqrt{\left(x-1\right)+2\sqrt{x-1}+1}+\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}}{\sqrt{\left(\sqrt{\left(x-1\right)+2\sqrt{x-1}+1}\right)}-\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}}\)=\(\frac{\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}}{\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}}\)Vì x>/2
=\(\frac{\sqrt{x-1}+1+\sqrt{x-1}-1}{\sqrt{x-1}+1-\sqrt{x-1}+1}=\frac{2\sqrt{x-1}}{2}=\sqrt{x-1}\)
a, ĐKXĐ : \(\left[{}\begin{matrix}x\ge0\\ y>0\end{matrix}\right.\) hoặc \(\left[{}\begin{matrix}x>0\\y\ge0\end{matrix}\right.\)
Ta có :\(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)
= \(\frac{\sqrt{x^2}\sqrt{x}+\sqrt{y^2}\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=\frac{\sqrt{x^3}+\sqrt{y^3}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)
= \(\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-\left(x-2\sqrt{xy}+y\right)\)
= \(\left(x-\sqrt{xy}+y\right)-\left(x-2\sqrt{xy}+y\right)\)
= \(x-\sqrt{xy}+y-x+2\sqrt{xy}-y\)
= \(\sqrt{xy}\)
\(\sqrt{\frac{\sqrt{a}-1}{\sqrt{b}+1}}:\sqrt{\frac{\sqrt{b}-1}{\sqrt{a}+1}}\) \(=\sqrt{\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{b}+1\right)\left(\sqrt{b}-1\right)}}\)\(=\sqrt{\frac{a^2-1}{b^2-1}}\) (*)
Thay a=7,25 và b= 3,25 vào (*) ta có:
\(\sqrt{\frac{7,25^2-1}{3,25^2-1}}\) \(=\frac{5\sqrt{33}}{4}:\frac{3\sqrt{17}}{4}=\frac{5\sqrt{33}}{3\sqrt{17}}=\frac{5\sqrt{561}}{51}\)
ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]
mik k bạn oy tuan thanh k lại đi