Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\left(\dfrac{-13}{17}-\dfrac{31}{52}\right)-\left(\dfrac{73}{52}-\dfrac{13}{17}+\dfrac{5}{6}\right)-\dfrac{3}{4}\)
\(=\dfrac{-13}{17}-\dfrac{31}{52}-\dfrac{73}{52}+\dfrac{13}{17}-\dfrac{5}{6}-\dfrac{3}{4}\)
\(=\left(\dfrac{-13}{17}+\dfrac{13}{17}\right)-\left(\dfrac{31}{52}+\dfrac{73}{52}\right)-\left(\dfrac{5}{6}+\dfrac{3}{4}\right)\)
\(=0-2-\dfrac{19}{12}\)
\(=-2-\dfrac{19}{12}\)
\(=\dfrac{-43}{12}\)
Bài 5 :
a, Theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\Rightarrow x=20;y=12;z=42\)
b, mình nghĩ đề này nên sửa là 3x = 2y ; 7y = 5z sẽ hợp lí hơn
Ta có : \(3x=2y;7x=5z\Rightarrow\frac{x}{2}=\frac{y}{3};\frac{x}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{14}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{14}=\frac{x-y+z}{10-15+14}=\frac{32}{9}\)
\(\Rightarrow x=\frac{320}{9};y=\frac{160}{3};z=\frac{448}{9}\)
a) \(4\sqrt{x}=8\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)
b) \(\left(x-1\right)^2=9\Leftrightarrow x-1=3\Leftrightarrow x=4\)
c: Áp dung tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{9}=\dfrac{x+y}{4+9}=3\)
Do đó: x=12; y=27
\(A\left(x\right)=2x^2-4x+3+4x^3-6=4x^3+2x^2-4x-3\)
\(B\left(x\right)=-4x^3-4x+2x^2-x-3=-4x^3+2x^2-5x-3\)
a) \(A\left(x\right)+B\left(x\right)=4x^3+2x^2-4x-3+\left(-4x^3\right)+2x^2-5x-3\)
\(=\left(4x^3-4x^3\right)+\left(2x^2+2x^2\right)+\left(-4x-5x\right)+\left(-3-3\right)\\ =4x^2-9x-6\)
b) \(A\left(x\right)-B\left(x\right)=4x^3+2x^2-4x-3+4x^3-2x^2+5x+3\)
\(=\left(4x^3+4x^3\right)+\left(2x^2-2x^2\right)+\left(-4x+5x\right)+\left(-3+3\right)\\ =8x^3+x\)
\(a)A\left(x\right)+B\left(x\right)=\left(2x^2-4x+3+4x^3-6\right)+\left(-4x^3-4x+2x^2-x-3\right)\)
\(=2x^2-4x+3+4x^3-6+-4x^3-4x+2x^2-x-3\)
\(=\left(2x^2+2x^2\right)+\left(-4x-4x-x\right)+\left(3-6-3\right)+\left(4x^3-4x^3\right)\)
\(=4x^2+\left(-9x\right)+\left(-6\right)\)
\(=4x^2-9x-6\)
\(b)A\left(x\right)-B\left(x\right)=\left(2x^2-4x+3+4x^3-6\right)-\left(-4x^3-4x+2x^2-x-3\right)\)
\(=2x^2-4x+3+4x^3-6+4x^3+4x-2x^2+x+3\)
\(=\left(2x^2-2x^2\right)+\left(-4x+4x+x\right)+\left(3-6+3\right)+\left(4x^3+4x^3\right)\)
\(=x+\left(-6\right)+8x^3\)
\(=x-6+8x^3\)