Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, sinC = \(\frac{AB}{BC}\); tanC = \(\frac{AB}{AC}\)
cosC = \(\frac{AC}{BC}\); cotC = \(\frac{AC}{AB}\)
b, Xét tam giác ABC vuông tại A, đường cao AH
tanB = \(\frac{AC}{AB}=\sqrt{2}\Rightarrow AC=\sqrt{2}AB\)
* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{12}=\frac{1}{AB^2}+\frac{1}{2AB^2}\Rightarrow AB\approx4,24\)cm
\(\Rightarrow AC\approx4,24\sqrt{2}\)cm
Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}\approx\sqrt{4,24^2+\left(4,24\sqrt{2}\right)^2}\approx7,34\)cm
\(\hept{\begin{cases}|x-2|+2|y-1|=9\\x+|y-1|=-1\end{cases}}\)<=> \(\hept{\begin{cases}\left(x-2\right)+2\left(y-1\right)=9\\x+\left(y-1\right)=-1\end{cases}}\)
<=> \(\hept{\begin{cases}x-2+2y-2=9\\x+y-1=-1\end{cases}}\)<=>\(\hept{\begin{cases}x+2y=13\\x+y=0\end{cases}}\)<=> \(\hept{\begin{cases}x=-13\\y=13\end{cases}}\)
1) Ta có BC = BD + DC = 15 + 20 = 35cm
AB / AC = BD / DC = 15 / 20 = 3/4
<=> AB = 3/4.AC
Áp dụng Pytago :
AB² + AC² = 35²
<=> (3/4AC)² + AC² = 35²
<=> 0,5625AC² + AC² = 35²
<=> 1,5625AC² = 35²
<=> AC² = 35² / 1,5625 = 784
<=> AC = 28 cm
=> AB = 3/4 . 28 =21 cm
Cos C = 21 / 35 = 3/5
AD² = AC² + DC² - 2.AC.DC.cosC
<=> AD² = 28² + 20² - 2.28.20.3/5
<=> AD = 16√2 cm = 22,63 cm
quá dễ dàng
động não đi
\(1+\sqrt{\frac{2+\sqrt{3}}{2}}=A\)
\(\sqrt{2}A=\sqrt{2}+\sqrt{\frac{4+2\sqrt{3}}{2}}=\sqrt{2}+\sqrt{\frac{\left(1+\sqrt{3}\right)^2}{2}}=\sqrt{2}+\frac{1+\sqrt{3}}{\sqrt{2}}=\frac{3+\sqrt{3}}{\sqrt{2}}\)
\(A=\frac{3+\sqrt{3}}{\sqrt{2}}:\sqrt{2}=\frac{3+\sqrt{3}}{\sqrt{2}}\cdot\frac{1}{\sqrt{2}}=\frac{3+\sqrt{3}}{2}\)
câu 1 là 2 cạnh góc vuông hay 1 cạnh góc vuông và cạnh huyền thế
câu 2 AC là cạnh góc vuông hay cạnh huyền
1. Xét \(\Delta\)ABC vuông tại A, theo tỉ số lượng giác ta có
\(\cos B=\dfrac{AB}{BC}=\dfrac{6}{10}\Rightarrow B=53^O\\ C=A-B=90^o-53^o=37^o\\ AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=8\)
2. Xét \(\Delta\)ABC vuông tại A, theo tỉ số lượng giác ta có
\(\sin C=\dfrac{AB}{BC}\Rightarrow BC=\dfrac{AB}{\sin C}=\dfrac{5}{sin30}=10\\ AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-5^2}=5\sqrt{3}\\ B=A-C=90^o-30^o=60^o\)
a: Xét ΔCHD vuông tại H có HM là đường cao ứng với cạnh huyền CD
nên \(CM\cdot CD=CH^2\left(1\right)\)
Xét ΔCHE vuông tại H có HN là đường cao ứng với cạnh huyền CE
nên \(CN\cdot CE=CH^2\left(2\right)\)
Từ (1) và (2) suy ra \(CM\cdot CD=CN\cdot CE\)
b: Ta có: \(CM\cdot CD=CN\cdot CE\)
nên \(\dfrac{CM}{CE}=\dfrac{CN}{CD}\)
Xét ΔCMN và ΔCED có
\(\dfrac{CM}{CE}=\dfrac{CN}{CD}\)
\(\widehat{MCN}\) chung
Do đó: ΔCMN\(\sim\)ΔCED
a, \(P=\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{x+\sqrt{x}}\right)\)
\(P=\frac{x-1}{\sqrt{x}}:\left(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x+1}\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\)
\(P=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}:\frac{x-1+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(P=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}\cdot\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(P=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)
b, \(x=\frac{2}{2+\sqrt{3}}=\frac{2\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}=4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2\) (thỏa mãn)
thay vào P ta đc :
\(P=\frac{\left(\sqrt{\left(\sqrt{3}-1\right)^2}+1\right)^2}{\sqrt{\left(\sqrt{3}-1\right)^2}}=\frac{(\left|\sqrt{3}-1\right|+1)^2}{\left|\sqrt{3}-1\right|}\)
\(P=\frac{\left(\sqrt{3}-1+1\right)^2}{\sqrt{3}-1}\) vì \(\sqrt{3}-1>0\)
\(P=\frac{\sqrt{3}^2}{\sqrt{3}-1}=\frac{3}{\sqrt{3}-1}\)
c, \(P-2=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}-2=\frac{x+2\sqrt{x}+1-2\sqrt{x}}{\sqrt{x}}=\frac{x+1}{\sqrt{x}}\) mà x > 0
\(\Rightarrow P-2>0\Leftrightarrow P>2\)
d, thay P vào pt ta đc : \(\left(\sqrt{x}+1\right)^2=6\sqrt{x}-3-\sqrt{x-4}\)
\(\Leftrightarrow x+2\sqrt{x}+1=6\sqrt{x}-3-\sqrt{x-4}\)
\(\Leftrightarrow x-4\sqrt{x}+4+\sqrt{x-4}=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+\sqrt{x-4}=0\)
mà \(\hept{\begin{cases}\left(\sqrt{x}-2\right)^2\ge0\\\sqrt{x-4}\ge0\end{cases}}\) nên \(\hept{\begin{cases}\sqrt{x}-2=0\\\sqrt{x-4}=0\end{cases}}\Leftrightarrow x=4\left(tm\right)\)
vậy_