K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) BD là tia phân giác của góc ABC cũng là tia phân giác của góc ABE (vì E∈∈BC)

b) xét 2 tam giác BAD và BED có:

cạnh BD chung 

góc ABD=góc EBD(vì BD là tia phân giác của góc ABE)

E là trung điểm của BC=> BE=CE

2AB=BC hay AB=BC2BC2=BE=CE

=> AB=BE
=> 2 tam giác BAD=BED(c.g.c)

=> góc BAD=góc BED=90độ

xét 2 tam giác BED và CED có:

cạnh DE chung 

BE=CE(vì E là trung điểm của BC)

góc BED=góc CED(=90độ)

=> 2 tam giác BED=CED(c.g.c)

=> BD=DC(2 cạnh tương ứng)

c)2 tam giác BED=CED(theo b)

=> góc DBE=góc DCE(2 góc tương ứng)

mà góc ABD=góc DBE(vì BD là p.giác của góc ABE)

=> góc ABD=góc DBE=góc DCE 

=> góc ABD+góc DBE+góc DCE=góc ABE+góc DCE=3 góc DCE

mà tam giác ABC vuông ở A 

=> góc B+góc C=90độ

mà 3 góc DCE=góc ABE+góc DCE=90độ

=> góc DCE=9003=3009003=300

=> góc ABC=90độ-góc ABC

                    =90độ -30độ

                    =60độ

vậy góc B=60độ và góc C=30độ

16 tháng 10 2021

25..5...

25+15+20+10+5 bằng mấy

12 tháng 12 2016

A B C D E 1 2

a) Vì BC=2 AB

Mà E là trung điểm của BC

=> AB= BE = EC

Xét ΔABD và ΔEBD có:

AB=BE (cmt)

góc A1 = góc A2(gt)

BD: cạnh chung

=> ΔABD=ΔEBD (c.g.c)

=> góc ADB= góc EDB

=> DB là tia pg của góc ADE

b) VÌ ΔABD=ΔEBD( cmt)

=> góc BAD= góc BED=90

Mà : góc DEB + góc DEC=180

=> góc DEB= góc DEC

Xét ΔDEB và ΔDEC có:

DE:cạnh chung

góc DEB = góc DEC(cmt)

BE=CE(gt)

=> ΔDEB=ΔDEC(c.g.c)

=> BD=DC

c) Vì ΔDEB=ΔDEC(cmt)

=> góc B2= góc C

Mà: góc B+ góc C=90

<=> 2 B2+ góc C=90

<=> 3 góc B2=90

<=> B2=30

Vậy: góc C=góc B2=30; góc B= 2.B2=2.30=60

 

12 tháng 12 2016

thanks bạn nha

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng


Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF


Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE


Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0
29 tháng 12 2016

câu a>Ta có :BC=2AB mà E là trung điểm của BC suy ra BE=AB

Xét tam giác ABD và tam giác EBD có:

AB=EB(gt)

góc ABD=góc EBD(vì BD là phân giác góc ABC

Cạnh BD chung

Từ đó suy ra tam giác ABD= tam giác EBD

Suy ra góc ADB=góc EDB( 2 góc t/ ư)

Suy ra DB là phân giác góc ADE

còn b,c đâu

8 tháng 1 2020

hình vẽ : 

B A C D E 1 2

giải :

a, xét \(\Delta ABC\) và \(\Delta EBD\)có :

AB = EB ( do BC = 2AB )

\(\widehat{B_1}=\widehat{B_2}\) ( gt )

BD cạnh chung 

\(\Rightarrow\Delta ABC=\Delta EBD\left(c.g.c\right)\)

do đó \(\widehat{ADB}=\widehat{EDB}\)

=> DB là tia phân giác của \(\widehat{ADE}\)

b, xét tam giác ABD và tam giác EBD có :

  AB = EB ( gt )

  \(\widehat{B_1}=\widehat{B_2}\)

 BD cạnh chung

=> tam giác ABD = tam giác EBD ( c.g.c )

=> \(\widehat{DEB}=\widehat{DAB}=90^0\) Mà \(\widehat{DEB}+\widehat{DEC}=180^0\)

\(\Rightarrow\widehat{AEC}=90^0\)

Xét tam giác EDB và EDC có :

EB = EC ( gt )

\(\widehat{DEB}=\widehat{DEC}=90^0\)

ED chung

=> tam giác EDB = tam giác EDC ( c.g.c )

=> DB = DC Và \(\widehat{C}=\widehat{B}_2\)

c, ta có : \(\widehat{B_1}=\widehat{B}_2\) mà \(\widehat{B_2}=\widehat{C}\) Do đó \(\widehat{B}+\widehat{B_1}+\widehat{B_2}=2\widehat{C}\)

Trong tam giác vuông ABC thì  \(\widehat{B}+\widehat{C}=90^0\) Hay \(3\widehat{C}=90^0\)

\(\Rightarrow\widehat{C}=30^0;\widehat{B}=30^0.2=60^0\)

  

16 tháng 9 2021

câu a>Ta có :BC=2AB mà E là trung điểm của BC suy ra BE=AB

Xét tam giác ABD và tam giác EBD có:

AB=EB(gt)

góc ABD=góc EBD(vì BD là phân giác góc ABC

Cạnh BD chung

Từ đó suy ra tam giác ABD= tam giác EBD

Suy ra góc ADB=góc EDB( 2 góc t/ ư)

Suy ra DB là phân giác góc ADE

16 tháng 9 2021

b) ΔABD=ΔEBD(c-g-c) nên ˆDEB=ˆDAB=90o mà ˆDEB+ˆDEC=180o

Do đó ˆAEC=90o. Xét ΔEDB và ΔEDC ta có:

EB=EC;

ˆDEB=ˆDAB=90o;

ED chung

Do đó ΔEDB=ΔEDC(c-g-c)

Vậy DB=CD(hai cạnh tương ứng)

ˆC=ˆDBC(hai góc tương ứng)

c)Ta có:ˆABD=ˆEBD mà ˆEBD=ˆC .Do đó ˆB+ˆABD+ˆEBD=2ˆC

Trong tam giác vuông ABC thì ˆB+ˆC=99o hay 3ˆC=90o

⇒ˆC=30o,ˆB=30o.2=60o

5 tháng 8 2016

a) BD là tia phân giác của góc ABC cũng là tia phân giác của góc ABE (vì E\(\in\)BC)

b) xét 2 tam giác BAD và BED có:

cạnh BD chung 

góc ABD=góc EBD(vì BD là tia phân giác của góc ABE)

E là trung điểm của BC=> BE=CE

2AB=BC hay AB=\(\frac{BC}{2}\)=BE=CE

=> AB=BE
=> 2 tam giác BAD=BED(c.g.c)

=> góc BAD=góc BED=90độ

xét 2 tam giác BED và CED có:

cạnh DE chung 

BE=CE(vì E là trung điểm của BC)

góc BED=góc CED(=90độ)

=> 2 tam giác BED=CED(c.g.c)

=> BD=DC(2 cạnh tương ứng)

c)2 tam giác BED=CED(theo b)

=> góc DBE=góc DCE(2 góc tương ứng)

mà góc ABD=góc DBE(vì BD là p.giác của góc ABE)

=> góc ABD=góc DBE=góc DCE 

=> góc ABD+góc DBE+góc DCE=góc ABE+góc DCE=3 góc DCE

mà tam giác ABC vuông ở A 

=> góc B+góc C=90độ

mà 3 góc DCE=góc ABE+góc DCE=90độ

=> góc DCE=\(\frac{90^0}{3}=30^0\)

=> góc ABC=90độ-góc ABC

                    =90độ -30độ

                    =60độ

vậy góc B=60độ và góc C=30độ

 

 

16 tháng 11 2023

 

 

a) Vì \( E \) là trung điểm của \( BC \) nên \( BE = \frac{BC}{2} \). Vì \( BC = 2AB \) nên \( BE = AB \). Vì \( BD \) là phân giác của \( \widehat{ABC} \) nên \( \frac{AD}{DC} = \frac{AB}{BC} \). Từ đó, ta có \( \frac{AD}{DE} = \frac{AB}{BE} \) chứng tỏ \( DB \) là phân giác của \( \widehat{ADE} \).

 

b) Dựa vào tính chất của phân giác trong tam giác