Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A C B H M D E F I J
a) Xét tứ giác AHBD có MB = MA; MD = MH nên nó là hình bình hành (dhnb).
Lại có \(\widehat{BHA}=90^o\) nên AHBD là hình chữ nhật (dhnb).
b) Do AHBD là hình chữ nhật nên AD song song và bằng HB.
Lại có HB = HE nên AD song song và bằng HE.
Xét tứ giác ADHE có AD song song và bằng HE nên nó là hình bình hành (dhnb)
c) Lấy J là trung điểm AF.
Do AB và EF cùng vuông góc với AC nên BAFE là hình thang vuông.
Lại có H, J là trung điểm các cạnh bên nên HJ là đường trung bình của hình thang.
Vậy nên HJ // AB // EF hay \(HJ\perp AF\)
Xét tam giác AHF có HJ là trung tuyến đồng thời đường cao nên nó là tam giác cân.
Vậy thì HA = HF.
d) Xét tam giác vuông EFC có FI là trung tuyến ứng với cạnh huyền nên FI = IC hay \(\widehat{IFC}=\widehat{ICF}\)
Lại có \(\widehat{ICF}=\widehat{BAH}\) (Cùng phụ với góc HAC)
Nên \(\widehat{IFC}=\widehat{BAH}\)
Ta cũng có \(\widehat{HFE}=\widehat{JHF}\) (Hai góc so le trong)
\(\widehat{JHF}=\widehat{JHA}\) (HJ là phân giác)
\(\widehat{JHA}=\widehat{BAH}\) (Hai góc so le trong)
nên \(\widehat{HFE}=\widehat{BAH}\)
Vậy thì \(\widehat{IFC}=\widehat{HFE}\)
Từ đó ta có : \(\widehat{IFC}+\widehat{EFI}=\widehat{HFE}+\widehat{EFI}\Rightarrow\widehat{HFI}=\widehat{EFC}=90^o\)
Hay \(HF\perp FI\)
\(a,\) Vì M là trung điểm AB cà DH nên AHBD là hình bình hành
Mà \(\widehat{AHB}=90^0\) (đường cao AH) nên AHBD là hcn
\(b,\) Vì AHBD là hcn nên \(AD=BH;AD\text{//}HB\)
Mà \(BH=HE\Rightarrow AD=HE;AD\text{//}HE\)
Do đó: ADHE là hình bình hành
\(c,\) Vì ADHE là hbh mà N là giao AH và DE nên N là trung điểm AH và DE
Mà M là trung điểm AB nên MN là đtb \(\Delta ABH\)
Do đó \(MN//BH\) hay \(MN//BC\)
Ta có N là trung điểm AH và K là trung điểm AC nên NK là đtb \(\Delta ACH\)
Do đó \(NK//HC\) hay \(NK//BC\)
Do đó theo định lí Ta lét thì MN trùng NK hay M,N,K thẳng hàng
a: Xét tứ giác AHBD có
M là trung điểm của AB
M là trung điểm của HD
Do đó: AHBD là hình bình hành
mà \(\widehat{AHB}=90^0\)
nên AHBD là hình chữ nhật
a: Xét tứ giác AHBD có
M là trung điểm của AB
M là trung điểm của HD
Do đó: AHBD là hình bình hành
mà \(\widehat{AHB}=90^0\)
nên AHBD là hình chữ nhật
b: Vì AHBD là hình chữ nhật
nên AD//BH và AD=BH
=>AD//EH và AD=EH
=>ADHE là hình bình hành
a: Xét tứ giác AHCD có
M là trung điểm chung của AC và HD
góc AHC=90 độ
=>AHCD là hình chữ nhật
b: Xét tứ giác ADHE có
AD//HE
AD=HE
=>ADHE là hình bình hành
a: Xét tứ giác ADCH có
M là trung điểm chung của AC và HD
góc AHC=90 độ
Do đó: ADCH là hình chữ nhật
b: Xét tứ giác ADHE có
AD//HE
AD=HE
Do đó: ADHE là hình bình hành
a)Xét tứ giác ABDC :
AM = MD ; BM = MC
=>Tứ giác ABDC là hình bình hành
Mà góc BAC = 90 = >Tứ giác ABDC là hcn
b)Xét tam giác AID :
AH= HI ; AM = MD (gt)
=> HM song song ID ( đường tb)
=>tứ giác BIDC la ht
AC la trung truc AI = > tam giac ABI can tai B
=> AB = BI ma AB = DC ( ABDC la hcn )=> BI = DC
hay BIDC la hinh thang can
c) Ta có góc ACB = góc AHM = góc AEF
góc BAM = góc ABM
mà góc ABM + góc ACM = 90 => góc AEF + góc BAM = 90 độ hay AM vuông góc EF ( đccm)
a) Xét tứ giác ABCD có:
. M là trung điểm của BC ( AM là đường trung tuyến)
. M là tđ của AD ( gt)
Vậy: ABCD là hbh ( tứ giác có 2 đường chéo cắt nhau tại tđ của mỗi đường)
mà \(\widehat{BAC}\) = 900 ( \(\Delta\) ABC vuông tại A)
--> ABCD là hình chữ nhật ( hbh có 1 góc vuông)
b) Ta có: \(IA\perp AC\)
\(CD\perp AC\)
\(\Rightarrow\) IA // CD
Xét tứ giác BIDC có:
. IA // CD (cmt)
\(\Rightarrow\) IB // CD ( B ϵ IA )
. AB =CD ( cạnh đối hcn ABCD )
mà AB = IB ( tính chất đối xứng)
\(\Rightarrow\) IB = CD ( cùng = AB )
Vậy: BIDC là hbh ( tứ giác có 2 cạnh đối vừa //, vừa = nhau)
\(\Rightarrow\) BC // ID ( cạnh đối hbh)
" đề câu c sai nha bạn"
ứ giác HDAE có ^A=^D=^E=90 độ
nên HDAE là hình chữ nhật, suy ra AH=DE.
b) ∆BDH vuông tại D có DP là trung tuyến nên PD=PH
suy ra ∆PDH cân tại P nên ^PDH=PHD (1)
Do ADHE là hình chữ nhật nên ^ODH=^OHD (2)
công vế với vế của (1) và (2) ta có:
^PDH+^ODH=^PHD+^OHD=^OHP=90 độ
Hay ^PDO=90 độ, nên PD┴DE. (3)
Chứng minh tương tự cuãng có QE┴DE (4)
từ (3) và (4) suy ra PD//QE
nên DEQP là hình thang vuông.
c) BO và AH là đường cao của ∆ABQ nên O là trực tâm
của ∆ABQ. ADHE là hình chữ nhật nên S(ADHE)=2S(DHE) (5)
d)∆BDH vuông tại D có DP là trung tuyến
nên S(BDH)=2S(DPH) (6)
tương tự S(HAC) = 2S(HEQ) (7)
Cộng vế với vế của (5), (6), (7)
thì S(ABC)=2S(DEQP)