K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, dùng pitago là ra

b,Ta có:
AB^2 + AC^2 = 9^2 + 12^2 = 225 = BC^2
==> ABC vuông tại A
Vì ABC vuông tại A và có AH là đường cao từ đỉnh A nên ta có công thức:
1/AH^2 = 1/AB^2 + 1/AC^2
= 1/9^2 + 1/12^2
==> AH = 7,2
Áp dụng định lí Pi ta go trong tam giác vuông ABH ta được:
AB^2 = AH^2 + BH^2
==> BH^2= AB^2 - AH^2
= 9^2 - 7,2^2
= 5,4

c)
Vì ABH vuông tại H và có EH là đường cao từ đỉnh H nên ta có công thức:
1/EH^2= 1/BH^2 + 1/AH^2
= 1/5,4^2 + 1/7,2^2
==> EH= 4,32
Áp dụng định lý Pytago trong tam giác vuông AEH ta được:
AE^2 = AH^2 - EH^2
= 7,2^2 - 4,32^2
==> AE=5,76
Xét hình tứ giác AEHI có 3 góc vuông nên là một hình chữ nhật ==> AI=EH=4,32
Xét tỉ lệ: AE/AI = 5,76/4,32=4/3 (1)
Xét tỉ lệ: AC/AB=12/9 =4/3 (2)
Từ (1) và (2) suy ra điều phải chứng minh

15 tháng 6 2019

A B C I E H M

Số tự thêm ha

a/ Xét tam giác ABC, áp dụng Định lí Pitago đảo:

\(AB^2+AC^2\)

\(=9^2+12^2=225=15^2=BC^2\)

=> Tam giác ABC vuông

b/ Xét tam giác ABCvuông, áp dụng hệ thức về cạnh và đường cao trong tam giác vuông:

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)(định lí 4)

\(\frac{1}{AH^2}=\frac{1}{9^2}+\frac{1}{12^2}=\frac{25}{1296}\)

\(\Rightarrow AH^2=\frac{1296}{25}\Rightarrow AH=7,2\)(cm)

Xét tam giác ABC vuông, áp dụng hệ thức về cạnh và đường cao trong tam giác vuông:

\(AB^2=BH\cdot BC\)(đinh lí 1)

\(9^2=BH\cdot15\)

\(\Rightarrow BH=5,4\)(cm)

c/ Xét tam giác ABH vuông, áp dụng hệ thức về cạnh và đường cao trong tam giác vuông:

\(AH^2=AE\cdot AB\)(định lí 1) [1]

Xét tam giác AHC vuông, áp dụng hệ thức về cạnh và đường cao trong tam giác vuông:

\(AH^2=AI\cdot IC\)(đinh lí 1) [2]

Từ [1], [2] \(\Rightarrow AE\cdot AB=AI\cdot AC\)(đpcm)

d/ Gọi M là đường trung tuyến tam giác ABC

\(\Rightarrow BM=MC=\frac{BC}{2}=AM\)

Xét tam giác ABC vuông, áp dụng hệ thức về cạnh và đường cao trong tam giác vuông:

\(AH^2=BH\cdot HC\)(định lí 2)

\(\Rightarrow\sqrt{BH\cdot HC}=\sqrt{AH^2}=AH\)

Mà \(AH\le AM\)(  AH = AM với trường hợp AH trùng AM )

\(\Rightarrow\sqrt{HB\cdot HC}\le\frac{BC}{2}\)(đpcm)

p/s Hình hơi xấu nhé, thông cảm >:

16 tháng 6 2019

Ahwi:

Bài d nếu thay số vào thì có được không bạn? do mik thấy các cạnh trên đều tìm được??

28 tháng 10 2018

Cảm ơn bạn nhiều