Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tra mạng thì cậu làm đi bài khó mới hỏi chứ thế thì gọi là chép à
(bài 24)
a. ΔABC cân tại A
⇒∠B = ∠C = (180o- ∠A) / 2 (tính chất tam giác cân) (1)
Play
Unmute
Loaded: 100.00%
Remaining Time -1:04
Close Player
AB = AC (gt) ⇒ AM + BM = AN + CN
Mà BM = CN (gt) ⇒ AM = AN
⇒ ΔAMN cân tại A
⇒∠M1 = ∠N1 = (180o- ∠A) / 2 (tính chất tam giác cân) (2)
Từ (1) và (2) suy ra: ∠M1 = ∠B
⇒ MN // BC (vì có cặp góc đồng vị bằng nhau)
Tứ giác BCNM là hình thang có ∠B = ∠C
Vậy BCNM là hình thang cân.
b. ∠B = ∠C = (180o – 40o) / 2 = 70o
Mà ∠M2+ ∠B = 180o (hai góc trong cùng phía nên bù nhau)
Suy ra: ∠M2 = 180o - ∠B = 180o – 70o = 110o
∠N2= ∠M2= 110o (tính chất hình thang cân)
(bài 25)
+) Do BE và CF lần lượt là tia phân giác của góc B và góc C nên ta có:
Mà tam giác ABC cân tại A nên ∠B = ∠C
Suy ra: ∠ABE = ∠ACF
Xét hai tam giác AEB và AFC
Có AB = AC (ΔABC cân tại A)
∠ABE = ∠ACF (chứng minh trên)
∠A là góc chung
⇒ ΔAEB = ΔAFC (g.c.g) ⇒ AE = AF ⇒ ΔAEF cân tại A
⇒ ∠AFE = (180o− ∠A) / 2 và trong tam giác ΔABC: ∠B = (180o− ∠A) / 2
⇒∠AFE = ∠B ⇒ FE//BC ( có hai góc ở vị trí đồng vị bằng nhau).
⇒ Tứ giác BFEC là hình thang.
Advertisement: 30:40
Close Player
Vì FE//BC nên ta có: ∠FEB = ∠EBC (so le trong)
Lại có: ∠FBE = ∠EBC ( vì BE là tia phân giác của góc B)
⇒∠FBE = ∠FEB
⇒ ΔFBE cân ở F ⇒ FB = FE
⇒ Hình thang BFEC là hình thang cân có đáy nhỏ bằng cạnh bên (đpcm)
(bài 26)
Từ B kẻ đường thẳng song song với AC cắt đường thẳng DC tại K.
Ta có hình thang ABKC có hai cạnh bên BK // AC nên AC = BK
Mà AC = BD (gt)
Suy ra: BD = BK do đó ΔBDK cân tại B
⇒ ∠D1 = ∠K (tính chất hai tam giác cân)
Ta lại có: ∠C1 = ∠K (hai góc đồng vị)
Suy ra: ∠D1 = ∠C1
Xét ΔACD và ΔBDC:
AC = BD (gt)
∠C1 = ∠D1 (chứng minh trên)
CD chung
Do đó ΔACD = ΔBDC (c.g.c) ⇒ ∠(ADC) = ∠(BCD)
Hình thang ABCD có ∠(ADC) = ∠(BCD) nên là hình thang cân
TL:
mặc dù mik học lớp 6 nhưng có điều lạ là sao bạn học lớp 8 lại ra đề lớp 1 :v
\(HT\)
ko bt thì đừng tl