K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2016

Do hạt nhân mẹ Po ban đầu đứng yên, áp dụng định luật bảo toàn động lượng trước và sau phản ứng ta thu được 
                    \(P_{\alpha} = P_{Pb} \)

=>      \(2m_{\alpha} K_{\alpha}=2m_{Pb}K_{Pb} \)

=> \( 4,0026.K_{\alpha}=205,9744.K_{Rn}.(1)\)

Áp dụng định luật bảo toàn năng lượng toàn phần có

         \(K_{\alpha}+K_{Pb} = (m_t-m_s)c^2\)

=> \(K_{\alpha}+K_{Rn} = (m_{Po}-m_{\alpha}-m_{Pb})c^2= 0,0058.931,5 = 5,4027 MeV. (2)\)

Từ (1) và (2) giải hệ phương trình ta được

\(K_{\alpha} = 5,2997 MeV; K_{Pb} = 0,103 MeV. \)

=> \(v_{Pb}= \sqrt{\frac{2K_{Pb}}{m_{Pb}}} =\sqrt{\frac{2.0,103.10^6.1,6.10^{-19}}{205,9744.1,66055.10^{-27}}} = 3,06.10^5m/s.\)

Chú ý đổi đơn vị \(1 MeV = 10^6.1,6.10^{-19}J ; 1 u = 1,66055.10^{-27} kg.\)

 

6 tháng 4 2016

\(_{84}^{210}Po \rightarrow_Z^A X + _2^4He\)

\(m_t-m_s = m_{Po}-(m_X + m_{He}) = 5,805.10^{-3}u > 0\), phản ứng là tỏa năng lượng.

=> \(W_{tỏa} = (m_t-m_s)c^2 = K_s-K_t\)

=> \(5,805.10^{-3}.931,5 = K_X+K_{He}\) (do hạt nhân Po đứng yên nen KPo = Ktruoc = 0)

=> \( K_X+K_{He}=5,4074MeV.(1)\)

Áp dụng định luật bảo toàn động lượng

\(\overrightarrow P_{Po} =\overrightarrow P_{He} + \overrightarrow P_{X} = \overrightarrow 0\)

=> \(P_{He} = P_X\)

=> \(m_{He}.K_{He} =m_X. P_X.(2)\)

Thay mHe= 4,002603 u;  mX = 205,974468 u vào (2). Bấm máy giải hệ phương trình được nghiệm

\(K_{He}= 5,3043 \ \ MeV => v_{He} = \sqrt{\frac{2.5,3043.10^6.1,6.10^{-19}}{4,002603.1,66055.10^{-27}}} \approx 1,6.10^7 m/s.\)

 

 

 

8 tháng 4 2016

mik nghĩ C

nhưng dựa vào định luật bảo tàng động lượng thì xác xuất tỉ lệ chỉ là gần bằng mà thôi nó cũng tương ứng vs 50% còn phải tùy vào sự may mắn hay đáp án nx

mik giải ra là gần bằng 1,6.10^7 m/s

16 tháng 1 2017

Đáp án A

25 tháng 4 2019

Chọn A

8 tháng 4 2016

\(_1^1p + _3^7 Li \rightarrow 2_2^4He\)

Phản ứng tỏa năng lượng nên \(W_{tỏa} = (m_t-m_s)c^2 = 2K_{He}-(K_p+K_{Li})\)

=>  \( 2K_{He} = (m_p+m_{Li}-2m_{He})c^2+ K_p\) (do Li đứng yên nên KLi = 0)

=> \(K_{He} = 9,6 MeV = 9,6.10^6.1,6.10^{-19}J.\)

=> \(v = \sqrt{\frac{2K_{He}}{m_{He}}} = \sqrt{\frac{2.9,6.10^6.1,6.10^{-19}}{4,0015.1,66.10^{-27}}} = 21505282,4 m/s.\)

6 tháng 4 2016

\(\alpha + _7^{14}N \rightarrow p + _8^{17} O\)

 \(m_t-m_s = m_{\alpha}+m_N - (m_p+m_O) = -1,281.10^{-3}u < 0\), phản ứng là thu năng lượng.

Sử dụng công thức: \(W_{thu} = (m_s-m_t)c^2 = K_t-K_s\)

=> \(1,285.10^{-3}.931 = K_{\alpha}+K_N-( K_p+K_O)\) (do N đứng yên nên KN = 0)

=> \(K_{O} = 1,5074MeV.\)

Áp dụng định luật bảo toàn động lượng

P P α p P α O

\(\overrightarrow P_{\alpha} =\overrightarrow P_{p} + \overrightarrow P_O \)

Dựa vào hình vẽ ta có 

Áp dụng định lí hàm cos trong tam giác

\(P_{\alpha}^2+ P_{p}^2 -2 P_{\alpha}P_{p}\cos{\alpha} = P_{O}^2\)

=> \(\cos {\alpha} = \frac{P_{\alpha}^2+P_p^2-P_O^2}{2P_{\alpha}.P_{p}} = \frac{2m_{\alpha}K_{\alpha}+2m_pK_P-2.m_O.K_O}{2.\sqrt{2.m_{\alpha}K_{\alpha}.2.m_p.K_p}} \)

=> \(\alpha \approx 52^016'\).

 

 

6 tháng 4 2016

Cảm ơn lời giải của bạn Hoc247 nhé.

20 tháng 3 2016

Cứ mỗi hạt nhân Pôlôni bị phân rã tạo thành 1 hạt nhân chì trong mẫu.

Số hạt nhân Pôlôni bị phân rã là \(\Delta N = N_0 2^{-\frac{t}{T}}.\)

Số hạt nhân Pônôni còn lại là \( N = N_0 2^{-\frac{t}{T}}.\)

Tại thời điểm t1 : \(\frac{\Delta N}{N } = \frac{1-2^{-\frac{t_1}{T}}}{2^{-\frac{t_1}{T}}}= \frac{1}{3}\)

=> \(3(1-2^{-\frac{t_1}{T}})= 2^{-\frac{t_1}{T}}\)

=> \(2^{-\frac{t_1}{T}}= 2^{-2}\)

=> \(t_1 = 2T\)

=> \(t_2 = 2T+276 = 552 \) (ngày)

=> \(\frac{t_2}{T}= \frac{552}{138}= 4.\)

Tại thời điểm t2 : \(\frac{\Delta N_1}{N_1 } = \frac{1-2^{-\frac{t_2}{T}}}{2^{-\frac{t_2}{T}}}= \frac{1-2^{-4}}{2^{-4}}= 15.\)

=> \(\frac{N_1}{\Delta N_1} = \frac{1}{15}.\)

21 tháng 3 2016

Hoc24h là nguyễn quang hưng 

8 tháng 4 2016

\(_1^1p + _3^7 Li \rightarrow 2_2^4He\)

Nhận xét: \(m_t-m_s = m_{Li}+m_p - 2m_{He} = 0,0185u > 0\), phản ứng là tỏa năng lượng.

Sử dụng công thức: \(W_{tỏa} = (m_t-m_s)c^2 = K_s-K_t\)

=> \(0,0185.931 = 2K_{He}- K_p\) (do Li đứng yên nên KLi = 0)

=> \(K_{He} = 9,342MeV.\)

Áp dụng định luật bảo toàn động lượng

PPααpPα12

\(\overrightarrow P_{p} =\overrightarrow P_{He1} + \overrightarrow P_{He2} \)

Dựa vào hình vẽ ta có 

Áp dụng định lí hàm cos trong tam giác

\(P_{He2}^2+ P_{He1}^2 +2 P_{He1}P_{He2}\cos{\alpha} = P_{P}^2\)

Mà \(P_{He1} = P_{He2}\)

=> \(1+\cos {\alpha} = \frac{P_p^2}{2P_{He}^2} = \frac{2.1.K_p}{2.2.m_{He}K_{He}} \)

=> \(\alpha \approx 168^039'.\) 

 

 

18 tháng 4 2016

áp dụng định lí hàm cos trong tam giác thì:

a gần bằng 168o39'( 168 độ, 39 phút)

nhớ là gần bằng thui nha

25 tháng 6 2016

Từ số hạt muốn tìm sô mol a.d công thức nào vây. Tks U. @Đào Vân Hương