Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(cotg\alpha=\frac{1}{tan\alpha}=\frac{a^2+b^2}{2ab}\Rightarrow tan\alpha=\frac{sin\alpha}{cos\alpha}=\frac{2ab}{a^2+b^2}\)
\(\Rightarrow tan^2\alpha+1=\frac{sin^2\alpha}{cos^2\alpha}+1=\frac{1}{cos^2\alpha}=\left(\frac{2ab}{a^2+b^2}\right)^2+1\)
\(\Rightarrow cos^2\alpha=\frac{1}{\left(\frac{2ab}{a^2+b^2}\right)^2+1}\)
Tới đây bạn khai căn ra là được nhé (chú ý điều kiện \(0^o< \alpha< 90^o\))
Do pi/2 < a < pi nên ta có điều kiện : 1 > sina > 0; -1 < cosa < 0
sin2a = -5/9 ---> 2sina.cosa = -5/9 (1)
Mặt khác sin^2 (a) + cos^2 (a) = 1 (2)
(1),(2) ---> (sina + cosa)^2 = 4/9
---> sina + cosa = 2/3 (3) hoặc sina + cosa = -2/3 (4)
(1) ---> sina.cosa = -5/18 (5)
(3),(5) ---> sina = (2 + căn 14)/6 ; cosa = (2 - căn 14)/6
(4),(5) ---> sina = (-2 + căn 14)/6 ; cosa = (-2 - căn 14)/6.
Có 2 đáp án như đã nêu trên (đều thỏa mãn ĐK đã đặt ra)
Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.
Chuyên mục Giúp tôi giải toán dành cho những bạn gặp bài toán khó hoặc có bài toán hay muốn chia sẻ. Bởi vậy các bạn học sinh chú ý không nên gửi bài linh tinh, không được có các hành vi nhằm gian lận điểm hỏi đáp như tạo câu hỏi và tự trả lời rồi chọn đúng.
a) sin anpha = 2/3 => góc anpha = 42o
cos 42o = 0,743
tan 42o = 0,9
cot 42o = 1/tan 42o = 1/0,9 = 1,111
b) tan anpha + cot anpha = 3
<=> tan anpha + 1/tan anpha = 3
<=> tan2 anpha = 2
<=> tan anpha = \(\sqrt{2}\)
=> góc anpha = 55o
Ta có: a = sin 55o . cos 55o
<=> a = 0,469
A B C M H
Vì AM là đường trung tuyến của tam giác vuông ABC nên ta có AM = MC = MB = BC/2
Dễ thấy \(\widehat{AMB}=2.\widehat{ACB}\) (Tam giác AMC cân tại M có AMB là góc ngoài)
Suy ra : \(Sin2\alpha=Sin\widehat{AMB}=\frac{AH}{AM}\)
Mặt khác ta lại có \(BC=2AM\) ; \(AH=\frac{AB.AC}{BC}\) \(\Rightarrow Sin2\alpha=\frac{\frac{AB.AC}{BC}}{\frac{BC}{2}}=\frac{2AB.AC}{BC^2}=2.\frac{AB}{BC}.\frac{AC}{BC}=2Sin\widehat{ABC}.Sin\widehat{ACB}=2Cos\alpha.Sin\alpha\)
Vậy \(Sin2\alpha=2Sin\alpha.Cos\alpha\)