K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2019

Chọn D

21 tháng 5 2019

31 tháng 8 2017

NV
30 tháng 8 2021

ĐKXĐ: \(x>0\)

\(x^{log_25}=t\Rightarrow25^{log_2x}=\left(5^{log_2x}\right)^2=\left(x^{log_25}\right)^2=t^2\)

\(x_1x_2=4\Rightarrow t_1t_2=\left(x_1x_2\right)^{log_25}=4^{log_25}=25\)

\(\left(m+1\right)t^2+\left(m-2\right)t-2m+1=0\) (1)

Pt có 2 nghiệm pb \(\Rightarrow\) (1) có 2 nghiệm dương pb

\(\Rightarrow\left\{{}\begin{matrix}\Delta=\left(m-2\right)^2-4\left(m+1\right)\left(-2m+1\right)>0\\t_1+t_2=\dfrac{2-m}{m+1}>0\\t_1t_2=\dfrac{-2m+1}{m+1}>0\end{matrix}\right.\)  \(\Rightarrow\left\{{}\begin{matrix}m\ne0\\-1< m< \dfrac{1}{2}\end{matrix}\right.\)

Ủa làm đến đây mới thấy kì kì, chỉ riêng hệ điều kiện này đã ko tồn tại m nguyên rồi, chưa cần điều kiện \(x_1x_2=4\)

30 tháng 8 2021

cái này mk làm 1 nghiệm t =1 xong thay tìm m, có vẻ cũng ko dài lắm :))))

1 tháng 11 2019

Chọn D

17 tháng 12 2023

\(\left(5+\sqrt{24}\right)^{x^2-2x-2}=49-10\sqrt{24}\)

=>\(\left(5+\sqrt{24}\right)^{x^2-2x-2}=\left(5-\sqrt{24}\right)^2\)

=>\(\left(5+\sqrt{24}\right)^{x^2-2x-2}=\left(5+\sqrt{24}\right)^{-2}\)

=>\(x^2-2x-2=-2\)

=>\(x^2-2x=0\)

=>x(x-2)=0

=>x=0 hoặc x=2

=>x1-x2=0-2=-2

18 tháng 11 2018

17 tháng 10 2018

Chọn D

7 tháng 4 2019

Chọn B

13 tháng 4 2017

Chọn C.

Điều kiện: 5x 1 > 0 hay x > 0

Phương trình  đã cho tương đương:

log2( 5x - 1) [log2( 5x - 1) + 1] = 2

Đặt t = log2(5x - 1), khi đó phuơng trình trở thành: t(t + 1) = 2

Suy ra t = 1 hoặc t = -2

Với t =1 ta có log2(5x - 1) = 1 nên 5x 1 = 2; x = log53

Với t = -2ta có log2(5x - 1) = - 2 nên 5x 1 = 2-2; x = log5(5/4)

Mặt khác x1 >   x2  suy ra