Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2(x4+y4+z4)-(x2+y2+z2)2-2(x2+y2+z2)(x+y+z)2+(x+y+z)4
=2(x4+y4+z4)-(x2+y2+z2)2+(x+y+z)2[-2(x2+y2+z2)+(x+y+z)2]
tới đây r` sao đặt ẩn phân tích tiếp chắc =="
a) Ta có:
x³ + y³ + z³ - 3xyz = (x+y)³ - 3xy(x-y) + z³ - 3xyz
= [(x+y)³ + z³] - 3xy(x+y+z)
= (x+y+z)³ - 3z(x+y)(x+y+z) - 3xy(x-y-z)
= (x+y+z)[(x+y+z)² - 3z(x+y) - 3xy]
= (x+y+z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy)
= (x+y+z)(x² + y² + z² - xy - xz - yz).
\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3+z^3-3x^2y-3xy^2-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x-y\right)+z^3-3xyz\)
\(=\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)^3-3z\left(x+y\right)\left(x+y+z\right)-3xy\left(x-y-z\right)\)
\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3z\left(x+y\right)-3xy\right]\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2+2xy+2xz+2yz-3xz-3yz-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)
Lời giải
\(\left(x^2+x\right)^2+\left(x^2+x\right)=y^2-3\)
\(\left(2x^2+2x+1\right)^2=4y^2-11\)
\(\Leftrightarrow Z^2-P^2=11\Rightarrow\left\{{}\begin{matrix}Z^2=36\\P^2=25\end{matrix}\right.\)
\(\left\{{}\begin{matrix}y=\pm3\\2x^2+2x+1=\pm5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=\pm3\\\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\end{matrix}\right.\)
\(a^3+b^3=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)
\(BĐVT,VT=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)
\(=\left(a+b\right)\left(a^2-2ab+b^2+ab\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=a^3+b^3=VP\)
\(\text{Vậy }a^3+b^3=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)
Câu hỏi của nguyen cao long - Toán lớp 8 - Học toán với OnlineMath
Cách 1:
Cách 2:
= (x + y)3 + z3 – 3x2y – 3xy2 - 3xyz
= (x + y +z)[(x + y)2 – (x + y)z + z2)] - 3xy(x + y + z)
= (x + y + z)(x2 +2xy + y2 – xz – yz +z2 – 3xy)
= (x + y + z)(x2 + y2 +z2 – xy - yz – xz)