Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
1. C. \(16x^2\left(x-y\right)\)\(-10y\left(y-1\right)\)\(=-2\left(y-x\right)\)\(\left(8x^2+5y\right)\)
2. C. \(\left(x-y\right)\left(x-y-3\right)\)
3. D. \(\left(x-2\right)\left(x+1\right)\)
4. C. \(y\left(x-2\right)\)\(5x\left(x-3\right)\)
5. D. \(3\left(x-2y\right)\)
1. Trong các kết quả sau kết quả nào sai
A. -17x^3y-34x^2y^2+51xy^3=17xy(x^2+2xy-3y^2)
B. x(y-1) +3(y-1)= -(1-y)(x+3)
C. 16x^2(x-y)-10y(y-1)=-2(y-x)(8x^2+5y)
2. Đa thức (x-y)^2+3(y-x) được phân tích thành nhân tử là:
A. (x+y)(x-y+3)
B. (x-y)(2x-2y+3)
C. (x-y)(x-y-3)
D. Cả 3 câu đều sai
3. Kết quả phân tích đa thức x(x-2)+(x-2) thành nhân tử
A. (x-2)x
B. (x-2)^2.x
C. x(2x-4)
D. (x-2)(x+1)
4. Kết quả phân tích 5x^2(xy-2y)-15x(xy-2y) thành nhân tử
A. (xy-2y)(5x^2-15x^2)
B. y(x-2)(5x^2-15x^2)
C. y(x-2)5x(x-3)
D. (xy-2y)5x(x-3)
5. Kết quả phân tích đa thức 3x-6y thành nhân tử là
A. 3(x-6y)
B. 3(3x-y)
C. 3(3x-2y)
D. 3(x-2y)
a) \(x^2-x-y^2-y\)
\(=\left(x-y\right).1\)
b) \(x^2-2xy+y^2-z^2\)
\(=\left(x-y\right)^2-x^2\)
\(=\left(x-y-z\right)\left(x-y+z\right)\)
Mik tl nhanh nhất đấy
\(2\left(x+y\right)\left(x-y\right)-\left(x-y\right)^2+\left(x+y\right)^2-4y^2\)
\(=\left[\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]-4y^2\)
\(=\left(x+y-x+y\right)^2-\left(2y\right)^2\)
\(=\left(2y\right)^2-\left(2y\right)^2=0\)
Sửa:
\(2\left(x+y\right)\left(x-y\right)-\left(x-y\right)^2+\left(x+y\right)^2-4y^2\)
\(=2\left(x^2-y^2\right)-\left(x^2-2xy+y^2\right)+\left(x^2+2xy+y^2\right)-4y^2\)
\(=2x^2-2y^2-x^2+2xy-y^2+x^2+2xy+y^2-4y^2\)
\(=2x^2-6y^2+4xy\)
\(=2\left(x^2-3y^2+2xy\right)\)
\(=2\left(x^2-3y^2+3xy-xy\right)\)
\(=2\left[x\left(x-y\right)+3y\left(x-y\right)\right]\)
\(=2\left(x-y\right)\left(3y+x\right)\)
a) \(x^2-x-y^2-y=\left(x^2-y^2\right)-\left(x+y\right)\\ =\left(x-y\right)\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(x-y-1\right)\)
b) \(x^2-2xy+y^2-z^2\)
\(=\left(x-y\right)^2-z^2=\left(x-y+z\right)\left(x-y-z\right)\)
a, \(x^2\left(x-y\right)+y^2\left(y-x\right)=x^2\left(x-y\right)-y^2\left(x-y\right)\)
\(=\left(x^2-y^2\right)\left(x-y\right)=\left(x-y\right)^2\left(x+y\right)\)
b, \(x^2+5x+6=x^2+3x+2x+6=\left(x+2\right)\left(x+3\right)\)
a)x+2a.(x-y)-y=(x-y)+2a(x-y)
=(x-y)(1+2a)
b)x^2-(a+b)x+ab=[x^2-(a+b)x]+a
=x(x-a-b)+a
x2(y - z) + y2(z - x) + z2(x - y)
= z2(x - y) + x2 y - x2 z + y2 z - y2 x
= z2(x - y) + (x2 y - y2 x) + (- x2 z + y2 z)
= (x - y)(z2 + xy - zx - zy)
= (x - y)[(z2 - zx) + (xy - zy)]
= (x - y)(z - x)(z -y)
\(x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)\)
\(=x^2\left(y-z\right)+y^2\left(z-y+y-x\right)\)
\(=x^2\left(y-z\right)-y^2\left(y-z\right)-y^2\left(x-y\right)+z^2\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(y-z\right)+\left(z-y\right)\left(y+z\right)\left(x-y\right)\)
\(=\left(x-y\right)\left(y-x\right)\left(x-z\right)\)
dễ mà , chỉ cần đổi trật tự một chút thì bạn có thể nhận ra đây là HĐT bình phương của 1 hiệu
\(A=\left(x+y\right)^2+\left(x-y\right)^2-2x-y\times x+y\)
\(A=\left(x+y\right)^2-2x-y\times x+y+\left(x-y\right)^2\)
\(A=\left(x+y-x-y\right)^2\)