Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
g: \(=x^4+12x^2+36-25x^2\)
\(=\left(x^2+6\right)^2-25x^2\)
\(=\left(x^2+5x+6\right)\left(x^2-5x+6\right)\)
\(=\left(x-2\right)\left(x-3\right)\left(x+2\right)\left(x+3\right)\)
i: \(x^4+3x^2-2x+3\)
\(=x^4-x^3+x^2+x^3-x^2+x+3x^2-3x+3\)
\(=\left(x^2-x+1\right)\left(x^2+x+3\right)\)
a) 5x3 - 40 = 5( x3 - 8 ) = 5( x - 2 )( x2 + 2x + 4 )
b) x2z + 4xyz + 4y2z = z( x2 + 4xy + 4y2 ) = z( x + 2y )2
c) 4x2 - y2 - 6x + 3y = ( 4x2 - y2 ) - ( 6x - 3y ) = ( 2x - y )( 2x + y ) - 3( 2x - y ) = ( 2x - y )( 2x + y - 3 )
d) x2 + 2x - 4y2 + 1 = ( x2 + 2x + 1 ) - 4y2 = ( x + 1 )2 - ( 2y )2 = ( x - 2y + 1 )( x + 2y + 1 )
e) 3x2 - 3y2 - 12x + 12y = 3( x2 - y2 - 4x + 4y ) = 3[ ( x2 - y2 ) - ( 4x - 4y ) ] = 3[ ( x - y )( x + y ) - 4( x - y ) ] = 3( x - y )( x + y - 4 )
f) x3 + 5x2 + 4x + 20 = x2( x + 5 ) + 4( x + 5 ) = ( x + 5 )( x2 + 4 )
g) x3 - x2 - 25x + 25 = x2( x - 1 ) - 25( x - 1 ) = ( x - 1 )( x2 - 25 ) = ( x - 1 )( x - 5 )( x + 5 )
a) \(5x^3-40=5\left(x^3-8\right)=5\left(x-2\right)\left(x^2+2x+4\right)\)
b) \(x^2z+4xyz+4y^2z=z\left(x^2+4xy+4y^2\right)=z\left(x+2y\right)^2\)
c) \(4x^2-y^2-6x+3y=\left(4x^2-y^2\right)-\left(6x-3y\right)\)
\(=\left(2x-y\right)\left(2x+y\right)-3\left(2x-y\right)=\left(2x-y\right)\left(2x+y-3\right)\)
d) \(x^2+2x-4y^2+1=x^2+2x+1-4y^2\)
\(=\left(x+1\right)^2-4y^2=\left(x+2y+1\right)\left(x-2y+1\right)\)
e) \(3x^2-3y^2-12x+12y=3\left(x^2-y^2-4x+4y\right)\)
\(=3\left[\left(x^2-y^2\right)-\left(4x-4y\right)\right]=3\left[\left(x-y\right)\left(x+y\right)-4\left(x-y\right)\right]\)
\(=3\left(x-y\right)\left(x+y+4\right)\)
f) \(x^3+5x^2+4x+20=\left(x^3+5x^2\right)+\left(4x+20\right)\)
\(=x^2.\left(x+5\right)+4\left(x+5\right)=\left(x^2+4\right)\left(x+5\right)\)
g) \(x^3-x^2-25x+25=\left(x^3-x^2\right)-\left(25x-25\right)\)
\(=x^2\left(x-1\right)-25\left(x-1\right)=\left(x-1\right)\left(x^2-25\right)\)
\(=\left(x-1\right)\left(x-5\right)\left(x+5\right)\)
a/ 2x^3 -5x^2 + 8x -3
= 2x^3 -x^2 -4x^2 +2x +6x -3
= x^2 .[2x-1] - 2x[2x-1] +3. [2x-1]
= [x^2-2x+3] [2x-1]
b/ 3x^3 - 14x^2 +4x +3
= 3x^3 +x^2 -15 x^2 -5x +9x +3
= x^2 [3x+1] -5.x [3x+1] +3. [3x+1]
= [x^2 -5x+3] [3x+1]
c/ Đặt C = 12x^2 + 5 x -12 y^2 +12y -10xy -3
= -[12y^2+10xy+3-12x^2-5x-12y]
12y^2 + 10xy +3-12x^2-5x-12y = 18xy +12y^2 -6y - 12x^2 -8xy +4x -9x -6y +3
= 6y [3x+2y-1] - 4.x[3x+2y-1] -3.[3x+2y-1]
= [6y-4x-3] [3x+2y-1]
=> C = -[6y-4x-3]. [ 3x+2y-1]
tom lai minh ra
12x2+5x-12y2+12y-10xy-3=12(x+(2y-1)/3)(x-(6y-3)/4)) co dung ko nha.
c, x4+6x3+11x2+6x+1
=x4+6x3+9x2+2x2+6x+1
=x4+9x2+1+6x3+2x2+6x
=(x2)2+(3x)2+12+2.x2.3x+2.x2.1+2.3x.1 (1)
Áp dụng hằng đẳng thức (a+b+c)2=a2+b2+c2+2ab+2ac+2bc
=> (1)=(x2+3x+1)2
Câu a nhé bạn:
a, 3x2−22xy−4x+8y+7y2+1
=3x2-21xy-xy-3x-x+7y+y+7y2+1
=(3x2−21xy−3x)−(xy-7y2-y)−(x-7y-1)
=3x(x−7y−1)−y(x−7y−1)−(x−7y−1)
=(3x−y−1)(x−7y−1)